Solve 𝝏𝒖/𝝏𝒕=(𝝏^𝟐 𝒖)/𝝏𝒙^𝟐 (𝟎, 𝟏) at t=0.002 𝒖=(𝟎,𝒕)=𝟎=𝒖(𝟏,𝒕), 𝒖(𝒙,𝟎)={(𝟐𝒙 (𝟎, 𝟎.𝟓) @𝟐(𝟏−𝒙), (𝟎.𝟓, 𝟏) Скачать
Solve 𝝏𝒖/𝝏𝒕=(𝝏^𝟐 𝒖)/𝝏𝒙^𝟐, 𝒖=(𝟎,𝒕)=𝟎=𝒖(𝟏,𝒕), 𝒖(𝒙,𝟎)=𝒔𝒊𝒏𝝅𝒙 by taking h=0.2, (𝟎, 𝟎.𝟏) #matheconnect Скачать
Find the numerical solution (𝝏^𝟐 𝒖)/𝝏𝒙^𝟐 =𝟐 𝝏𝒖/𝝏𝒕 , 𝒖=(𝟎,𝒕)=𝟎=𝒖(𝟒,𝒕), 𝒖(𝒙,𝟎)=𝒙(𝟒−𝒙) ,h=1,t=4 steps. Скачать
Bessel's Functions: Series solution of Bessel's Differential Equation Leading to Bessel's Function. Скачать
Solve the wave equation (𝝏^𝟐 𝒖)/〖𝝏𝒙〗^𝟐 =(𝝏^𝟐 𝒖)/〖𝝏𝒕〗^𝟐 𝒖(𝒙,𝟎)=𝒔𝒊𝒏𝝅𝒙 (0,1), h=0.2, k=0.2 at 𝒕=𝟏. Скачать
Solve the wave equation 25 (𝝏^𝟐 𝒖)/𝝏𝒙^𝟐 =(𝝏^𝟐 𝒖)/𝝏𝒕^𝟐 𝒖(𝒙,𝟎)={(𝟐𝟎𝒙 𝟎≤𝒙≤𝟏, 𝟓(𝟓−𝒙) 𝟏≤𝒙≤𝟓) h=1, 𝟎≤𝒕≤𝟏. Скачать
Solve the Wave equation (𝝏^𝟐 𝒖)/(𝝏𝒙^𝟐) =𝟎.𝟎𝟔𝟓 (𝝏^𝟐 𝒖)/𝝏𝒕^𝟐 , 𝒖(𝒙,𝟎)=𝒙^𝟐 (𝒙−𝟓), h=1, k=0.5 ,4 steps. Скачать
Solve the wave equation (𝝏^𝟐 𝒖)/〖𝝏𝒕〗^𝟐 =𝟒 (𝝏^𝟐 𝒖)/〖𝝏𝒙〗^𝟐 𝒖(𝒙,𝟎)=𝒙(𝟒−𝒙) , h=1, k=0.5 upto 4 steps. Скачать
21MAT31:Numerical Method PDE, Classification of PDE of second order & Finite difference approximate. Скачать
#Evaluate || lim_𝒙→𝟎(𝒔𝒊𝒏𝒙𝒙^𝟏⁄𝒙^𝟐 ) || 21MAT11 || Module : 2 || Differential Calculus ||BMATE101 Скачать
#18 Problem#4||PDE by direct integration||(𝝏^𝟐 𝒛)/𝝏𝒙𝝏𝒚=𝒔𝒊𝒏𝒙𝒔𝒊𝒏𝒚,||𝝏𝒛/𝝏𝒚=−𝟐𝒔𝒊𝒏𝒚, 𝒙=𝟎 and 𝒛=𝟎 𝒚=𝝅/𝟐|| Скачать
#17||Problem#3||Solution of non-homogenous PDE by direct integration (𝝏^𝟐 𝒛)/(𝝏𝒙^𝟐 𝝏𝒚)=𝒄𝒐𝒔(𝟐𝒙+𝟑𝒚)|| Скачать
#16 || Problem#2 ||Solution of non-homogenous PDE by direct integration Solve: (𝝏^𝟐 𝒛)/𝝏𝒙𝝏𝒚=𝒙/𝒚+𝒂 || Скачать
#15 || Problem#1|| Solution of non-homogenous PDE by direct integration || Solve:(𝝏^𝟐 𝒖)/𝝏𝒙^𝟐 =𝒙+𝒚|| Скачать
#14 ||Problem#2 ||Formation of partial differential equations|| Form a PDE from𝒇(𝒙^𝟐+𝒚^𝟐, 𝒛−𝒙𝒚) || Скачать
#30 || Solution of Lagrange’s linear Partial differential equation || Solve: (𝒚^𝟐+𝒙^𝟐)𝒑+𝒙(𝒚𝒒−𝒛)=𝟎 || Скачать
#29 || Solution of Lagrange’s linear Partial differential equation || Solve: 𝒙𝒑−𝒚𝒒=𝒚^𝟐−𝒙^𝟐|| 18MAT21 Скачать
#28 ||Solution of Lagrange’s linear Partial differential equation ||Solve: 𝒑𝒚𝒛+𝒒𝒛𝒙=𝒙𝒚|| 18MAT21|| Скачать
#27 || Problem on Solution of Lagrange’s linear PDE|| Solve: (𝒚^𝟐 𝒛)/𝒙 𝒑+𝒙𝒛𝒒=𝒚^𝟐|| 18MAT21|| #PDE|| Скачать
#26 || Solution of Lagrange’s linear Partial differential equation || Working Rule ||18MAT21||#PDE|| Скачать
#24 || Solution of one dimensional Heat equation (𝝏^𝟐 𝒖)/𝝏𝒕^𝟐 =𝒄^𝟐 (𝝏^𝟐 𝒖)/𝝏𝒙^𝟐 || 18MAT21 || #PDE. Скачать
#21 || Problem#7 || (𝝏^𝟐 𝒛)/〖𝝏𝒙〗^𝟐 =𝒂^𝟐 𝒛, given that when 𝒙=𝟎 and 𝒛=𝟎 and 𝝏𝒛/𝝏𝒙=𝒂𝒔𝒊𝒏𝒚|| 18MAT21 || Скачать
#20 || Problem#6 || (𝝏^𝟐 𝒛)/〖𝝏𝒙〗^𝟐 +𝒛=𝟎, given that when 𝒙=𝟎 and 𝒛=𝒆^𝒚 and 𝝏𝒛/𝝏𝒙=𝟏 ||18MAT21||#PDE Скачать
#19 || Problem#5 || (𝝏^𝟐 𝒛)/𝝏𝒙^𝟐 =𝒙𝒚, subject to the condition 𝝏𝒛/𝝏𝒙=𝒍𝒐𝒈(𝟏+𝒚) when 𝒙=𝟏 and 𝒛=𝟎|| Скачать
#11 || Problem#6 || PDE by eliminating the arbitrary function of the equation𝒛=𝒚𝒇(𝒙)+𝒙∅(𝒚) || Скачать
#10 || Problem#5 || PDE by eliminating the arbitrary function of the equation𝒛=𝒆^(𝒂𝒙+𝒃𝒚) 𝒇(𝒂𝒙−𝒃𝒚) || Скачать
#9 || Problem#5 || PDE by eliminating the arbitrary function of the equation 𝒛=𝒙+𝒚+𝒇(𝒙𝒚) || 18MAT21 Скачать
#8 || Problem#4 || Form a PDE by eliminating the arbitrary function of the equation𝒛=𝒆^𝒚 𝒇(𝒙+𝒚) || Скачать
#7 || Problem#3 | Form a PDE by eliminating the arbitrary function of the equation 𝒛=𝒇(𝒙^𝟐+𝒚^𝟐) || Скачать
#6 || Problem#2 || PDE by eliminating the arbitrary function of the equation𝒛=𝒇(𝒙+𝒂𝒕)+𝒈(𝒙−𝒂𝒕) || Скачать
#5 || Problem#1|| PDE by eliminating the arbitrary function of the equation. 𝒛=(𝒙+𝒚)∅(𝒙^𝟐−𝒚^𝟐) || Скачать
#4 || Problem#3 || PDE || Eliminating the arbitrary constant || 𝒙^𝟐/𝒂^𝟐 +𝒚^𝟐/𝒃^𝟐 +𝒛^𝟐/𝒄^𝟐 =𝟏 || Скачать
#3 ||Problem #3 || PDE ||eliminating the arbitrary constant from the equation𝟐𝒛=𝒙^𝟐/𝒂^𝟐 +𝒚^𝟐/𝒃^𝟐 | Скачать
#2 || Problem#1||Formation of partial differential equations by eliminating the arbitrary constant | Скачать
#1 || Introduction || Partial Differential Equations || 18MAT21 || #PDE || #Shafiqahmedyellur Скачать
#21 Problem#2 || ∫(𝒔𝒊𝒏𝝅𝒛^𝟐+𝒄𝒐𝒔𝝅𝒛^𝟐)/((𝒛−𝟏)^𝟐 (𝒛−𝟐)) 𝒅𝒛|| c:|𝒛|=𝟑 || c:|𝒛|=𝟏/𝟐 || c: |𝒛|=𝟑/𝟐||18MAT41 Скачать
#20 || Problem#1|| Cauchy’s integral formula|| ∮(𝒔𝒊𝒏𝝅𝒛^𝟐+𝒄𝒐𝒔𝝅𝒛^𝟐)/((𝒛−𝟏)(𝒛−𝟐)) 𝒅𝒛 || c: |𝒛|=𝟑 || Скачать
#17 || Problem#4|| Cauchy’s theorem || ∫𝒆^𝟐𝒛/((𝒁+𝟏)^𝟐 (𝒛−𝟐)) 𝒅𝒛 ,c is the circle |𝒛|=𝟑 ||18MAT41 || Скачать
#15 || Problem#3||Cauchy’s theorem ||∫𝒅𝒛/(𝒛^𝟐−𝟒) || 𝒄:|𝒛|=𝟏 || 𝒄:|𝒛|=𝟑 || 𝒄: |𝒛+𝟐|=𝟏 || 18MAT41 Скачать
#13 || Problem#1 || Cauchy’s theorem || ∫(𝒛^𝟐−𝒛+𝟏)/(𝒛−𝟏) 𝒅𝒛 || c: |𝒛|=𝟏 || c:|𝒛|=𝟏/𝟐|| 18MAT41 || Скачать
#19 || Problem#6|| Cauchy’s theorem || ∫𝒆^𝝅𝒛/(𝟐𝒛−𝒊)^𝟑 𝒅𝒛 where c is the circle |𝒛|=𝟏|| 18MAT41|| Скачать
#12 || Cauchy’s Integral Formula || Statement || Proof :𝒇(𝒂)=𝟏/𝟐𝝅𝒊 ∫(𝒇(𝒛))/((𝒛−𝒂)) 𝒅𝒛 || 18MAT41|| Скачать
#47 Problem #2||Legendre’s linear equation ||(𝟑𝒙+𝟐)^𝟐 𝒚^′′+𝟑(𝟑𝒙+𝟐) 𝒚^′+𝟑𝟔𝒚=𝟖𝒙^𝟐+𝟒𝒙+𝟏|| 18MAT41|| Скачать
#46||Problem#1 || Legendre’s linear equation ||(𝟏+𝒙)^𝟐 (𝒅^𝟐 𝒚)/𝒅𝒙^𝟐 +(𝟏+𝒙)𝒅𝒚/𝒅𝒙+𝒚=𝒔𝒊𝒏𝟐[𝒍𝒐𝒈(𝟏+𝒙)]. Скачать
#45 || Problem# 5 ||Cauchy’s linear equation || 𝒙^𝟐 𝒚^′′+𝒙𝒚^′+𝒚=𝟐〖𝒄𝒐𝒔〗^𝟐 (𝒍𝒐𝒈𝒙) || 18MAT21 || Скачать
#43 || Problem#3 || Cauchy’s linear equation || 𝒙^𝟐 (𝒅^𝟐 𝒚)/𝒅𝒙^𝟐 −𝟐𝒚/𝒙=𝒙+𝟏/𝒙^𝟐 |18MAT21| BMATC/M101 Скачать
#42 ||Problem#2|| Cauchy’s linear equation || 𝒙^𝟑 y''' +𝟑𝒙^𝟐 y'' + 𝒙y'+𝟖𝒚=𝟔𝟓𝒄𝒐𝒔(𝒍𝒐𝒈𝒙) || 18MAT21|| Скачать
#41 || Problem#1|| Cauchy’s linear equation || 𝒙^𝟐 (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 −𝟑𝒙 𝒅𝒚/𝒅𝒙+𝟒𝒚=(𝟏+𝒙^𝟐) || 18MAT21|| Скачать
#34.2 || Problem#5 || Mixed Type of Problems|| (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 −𝟔 𝒅𝒚/𝒅𝒙+𝟐𝟓𝒚=𝒆^𝟐𝒙+𝒔𝒊𝒏𝟐𝒙+𝒙 || 18MAT41|| Скачать
#34.1 || Problem# 4|| Mixed Type of Problems || Solve :𝒚^′′+𝟒𝒚^′−𝟏𝟐𝒚=𝒆^𝟐𝒙−𝟑𝒔𝒊𝒏𝟐𝒙 || 18MAT41|| Скачать
#32 .2 || Problem# 4 || Type :3 || Solve (𝑫^𝟑+𝟖)𝒚=𝒙^𝟒+𝟐𝒙+𝟏 || 18MAT41|| Conformal Transformation || Скачать
#32.1 || Problem#3 || Type : 3 || (𝒅^𝟐 𝒚)/𝒅𝒙^𝟐 +𝒅𝒚/𝒅𝒙=𝒙^𝟐+𝟐𝒙+𝟒 || 18MAT41 || By Shafiqahmed || Скачать
#9 || Complex line integration || Introduction || ∫𝒇(𝒛)𝒅𝒛=∫〖(𝒖𝒅𝒙−𝒗𝒅𝒚)+𝒊∫〖(𝒗𝒅𝒙+𝒖𝒅𝒚)〗〗|| Properties || Скачать
#7 || Problem#2 || Conformal transformation || Transformation of 𝝎=𝒆^𝒛 || 18MAT41 || By Shafiqahmed Скачать
#39 || Problem#4 || Method of variation parameter || (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 −𝒚=𝟐/〖𝟏+𝒆〗^𝒙 || 18MAT41|| Скачать
#38 || Problem#3 || Method of variation parameter || (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 −𝟔 𝒅𝒚/𝒅𝒙+𝟗𝒚=𝒆^𝟑𝒙/𝒙^𝟐 ||18MAT41|| Скачать
Complex Analysis Harmonic, Harmonic conjugate example 1, by Shafiqahmed Asst. Prof. JCE Belagavi Скачать
#5 Problem#3 || Bilinear transformation 𝒛=𝟎, −𝒊, 𝟐𝒊 𝐢𝐧𝐭𝐨 𝝎=𝟓𝒊, ∞, (−𝒊)/𝟑 || Invariant points || Скачать
#38 || Problem#3 || Method of variation parameter || (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 −𝟔 𝒅𝒚/𝒅𝒙+𝟗𝒚=𝒆^𝟑𝒙/𝒙^𝟐 ||18MAT21|| Скачать
#1 || Introduction || Conformal Transformations|| Bilinear Transformation || 𝝎=(𝒂𝒛+𝒃)/(𝒄𝒛+𝒅) || Скачать
#37 || Problem#2 || (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 +𝒚=𝒕𝒂𝒏𝒙 || Method of variation parameter || 18MAT21 || BMATC/M101 Скачать
#35 || Method of variation of Parameters || Working procedure for solving problem || 18MAT21 || Скачать
#25 || Problem# ||If f(z) is analytic, show that [𝝏^𝟐/〖𝝏𝒙〗^𝟐 +𝝏^𝟐/〖𝝏𝒚〗^𝟐 ] |𝒇(𝒛)|^𝟐=𝟒|𝒇^′ (𝒛)|^𝟐 || Скачать
#24 || Problem#2 || 𝒖=𝒆^𝒙 𝒙𝒄𝒐𝒔𝒚−𝒚𝒔𝒊𝒏𝒚 ||Harmonic conjugate || Analytic function f(z) ||18MAT41 || Скачать
#23 || Problem#1|| 𝒖=𝒙^𝟑−𝟑𝒙𝒚^𝟐+𝟑𝒙^𝟐−𝟑𝒚^𝟐+𝟏||Harmonic conjugate || Analytic function f(z) ||18MAT41| Скачать
#22 || Finding the conjugate harmonic function & the analytic functions ||18MAT41|| complex function Скачать
#34 || Problem#3 || Mixed Type of Problems || (𝒅^𝟑 𝒚)/〖𝒅𝒙〗^𝟑 +𝟐 (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 +𝒅𝒚/𝒅𝒙=𝒆^(−𝒙)+𝒔𝒊𝒏𝟐𝒙 | Скачать
#33 || Problem#2 || Mixed Type of Problems Solve Solve :〖(𝑫−𝟐)〗^𝟐 𝒚=𝟖(𝒆^𝟐𝒙+𝒔𝒊𝒏𝟐𝒙+𝒙^𝟐) || 18MAT21|| Скачать
#32 || Problem#1 || Type : 3 || Solve : (𝒅^𝟑 𝒚)/〖𝒅𝒙〗^𝟑 +𝟐 (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 +𝒅𝒚/𝒅𝒙=𝒙^𝟑|| 18MAT21|| Скачать
#29 ||Type:3 || Particular Integral(P.I) || 𝑷𝑰=(∅(𝒙))/(𝒇(𝑫)) 𝐖𝐡𝐞𝐫𝐞 ∅(𝐱) 𝐢𝐬 𝐩𝐨𝐥𝐲𝐧𝐨𝐦𝐢𝐚𝐥 ||18MAT21|| Скачать
#26 || Problem#4 || Solve : (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 +𝟑 𝒅𝒚/𝒅𝒙+𝟐𝒚=〖𝟒𝒄𝒐𝒔〗^𝟐 𝒙 || 18MAT21 || BMATC101 || BMATM101 Скачать
#25 || Problem#3 || Solve :〖(𝑫〗^𝟑−𝟏)𝒚=𝟑𝒄𝒐𝒔𝟐𝒙 || 18MAT21|| DIFFERENTIAL EQUATION OF HIGHER ORDER || Скачать
#24 || Problem#2 || Solve :𝒚^′′+𝟗𝒚=𝒄𝒐𝒔𝟐𝒙. 𝒄𝒐𝒔𝒙 || DIFFERENTIAL EQUATION OF HIGHER ORDER ||18MAT21|| Скачать
#23 || Problem#1 || Solve :𝒚^′′−𝟒𝒚^′+𝟏𝟑𝒚=𝒄𝒐𝒔𝟐𝐱 || DIFFERENTIAL EQUATION OF HIGHER ORDER || 18MAT21|| Скачать
#22 || Particular Integral ||Type:2 : 𝑷𝑰=(∅(𝒙))/(𝒇(𝑫))= 𝒔𝒊𝒏𝒂𝒙/(𝒇(𝑫^𝟐)) 𝒐𝒓 𝒄𝒐𝒔𝒂𝒙/(𝒇(𝑫^𝟐))|| 18MAT21|| Скачать
#21 || Problem#3 || Solve : (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 −𝟒𝒚=𝒄𝒐𝒔𝒉(𝟐𝒙−𝟏)+𝟑^𝒙 || 18MAT21 || BMATC101 || BMATM101 Скачать
#20 || Problem#2 || Solve :𝒚^′′+𝟐𝒚^′+𝒚=𝒄𝒐𝒔𝒉(𝒙⁄𝟐) ||18MAT21 || DIFFERENTIAL EQUATION OF HIGHER ORDER. Скачать
#21||Problem#7 || Given 𝒖+𝒗=𝟏/𝒓^𝟐 (𝒄𝒐𝒔𝟐𝜽−𝒔𝒊𝒏𝟐𝜽), 𝒓≠𝟎, Find analytic function f(z) || 18MAT41|| Скачать
#20 || Problem#6 || Find the analytic function f(z)= u + iv given 〖𝒖−𝒗=𝒆〗^𝒙 [𝒄𝒐𝒔𝒚−𝒔𝒊𝒏𝒚] || 18MAT41|| Скачать
#20|| Problem#2 || Solve :𝒚^′′+𝟐𝒚^′+𝒚=𝒄𝒐𝒔𝒉(𝒙⁄𝟐) ||18MAT21|| Differential equation of higher order || Скачать
#18 || Problem#4 || If ∅+𝒊𝝋 where 𝝋=(𝒙^𝟐−𝒚^𝟐 )+𝒙/(𝒙^𝟐+𝒚^𝟐 ) find ∅|| 18MAT41 || Complex function|| Скачать
#16 || Problem#11|| Solve :𝒚^′′+𝟒𝒚^′+𝟒𝒚=𝟎 Given 𝒚=𝟎, 𝒚^′=−𝟏 at 𝒙=𝟏 ||18MAT21|| D.E || BMATC/M101. Скачать
#15 || Problem#10 || Solve :〖(𝑫〗^𝟒+𝟔𝟒)𝒚=𝟎 ||18MAT21|| Differential Equations of higher order || Скачать
#14||Problem#9 ||Solve : (𝒅^𝟒 𝒚)/〖𝒅𝒕〗^𝟒 +𝟖 (𝒅^𝟐 𝒚)/〖𝒅𝒕〗^𝟐 +𝟏𝟔𝒚=𝟎 || 18MAT21||D.E of higher order || Скачать
#10|| Problem#5 ||Solve : (𝑫^𝟒+𝟐𝑫^𝟑−𝟓𝑫^𝟐−𝟔𝑫)𝒚=𝟎 ||18MAT21|| Differential Equations of higher order|| Скачать
#8 || Problem#3 || Solve :𝒚^′′′′−𝟓𝒚^′′+𝟒𝒚=𝟎 || 18MAT21 || DIFFERENTIAL EQUATION OF HIGHER ORDER|| Скачать
#7 || Problem#2 || Solve : (𝒅^𝟑 𝒚)/〖𝒅𝒙〗^𝟑 +𝟔 (𝒅^𝟐 𝒚)/〖𝒅𝒙〗^𝟐 +𝟏𝟏 𝒅𝒚/𝒅𝒙+𝟔𝒚=𝟎|| 18MAT21 || D.E|| Скачать
#17 || Problem# 3|| Analytic function f(z) given 𝒖=𝒆^(−𝒙) [(𝒙^𝟐−𝒚^𝟐 )𝒄𝒐𝒔𝒚+𝟐𝒙𝒚𝒔𝒊𝒏𝒚] || 18MAT41|| Скачать
#16 || Problem#2 || Analytic function f(z) || Real part is (𝒙^𝟒−𝒚^𝟒−𝟐𝒙)/(𝒙^𝟐+𝒚^𝟐 ) || 18MAT41 || Скачать
#4 || Method of finding the complementary function ||18MAT21|| DIFFERENTIAL EQUATION OF HIGHER ORDER Скачать
#13 || Problem#5 || Show that 𝒇(𝒛)=𝒆^𝒙 [𝒄𝒐𝒔𝒚+𝒊𝒔𝒊𝒏𝒚] is holomorphic || Complex Function || 18MAT4 || Скачать
#11|| Problem#3 || Show that 𝒇(𝒛)=𝒔𝒊𝒏𝒛 is analytic || Find 𝒇^′ (𝒛) || Calculus of complex functions| Скачать
#10 || Problem#2 || Show that 𝒘=𝒍𝒐𝒈𝒛, 𝒛≠𝟎 is analytic || Find 𝒅𝒘/𝒅𝒛 || Complex Function || 18MAT41|| Скачать
#1|| Linear differential equation of second order & higher order Homogenous differential equation|| Скачать
#9 || Problem#1 || Show that 𝒘=𝒛+𝒆^𝒛 is analytic || Find 𝒅𝒘/𝒅𝒛 || Complex functions ||18MAT41 || Скачать
#8 || Steps to find the derivative of analytic function || Calculus of complex functions ||18MAT41|| Скачать
#52 || Problem#11|| Evaluate ∫〖𝒙𝟏+𝒙^𝟐 𝒅𝒙〗, in [0, 1] ||Weddle’s rule || 7 ordinate|| log2||18MAT21 Скачать
#51 Problem#10 Evaluate ∫ 〖𝟏/(𝟏+𝒙^𝟐) 𝒅𝒙〗, [0, 6] || Weddle’s rule || 18MAT21|| Numerical Method || Скачать
#50 || Problem# 9 || Evaluate ∫ 〖𝒍𝒐𝒈𝒙 𝒅𝒙〗, in [4, 5.2] || taking 6 equal strips || Weddle’s rule || Скачать
#49 || Problem#8 || Evaluate ∫〖𝒙/(𝟏+𝒙^𝟐) 𝒅𝒙〗in [0,1] || Simpson’s 𝟑⁄𝟖 𝒕𝒉 rule || n=3 || log√2 || Скачать
#47 || Problem#6 || ∫ (𝒔𝒊𝒏𝒙−𝒍𝒐𝒈𝒙+𝒆^𝒙 )𝒅𝒙 || Simpson’s 𝟑⁄𝟖 𝒕𝒉 rule taking six parts || 18MAT21|| Скачать
#45 ||Problem#4 ||Simpson’s one third 𝟏⁄𝟑 𝒓𝒅 rule|| Evaluate ∫ 𝒅𝒙/log_𝟏𝟎𝒙 , [2,8] || 18MAT21|| Скачать
#6 || Harmonic Property || Proof of Polar form || Calculus of complex functions || 18MAT41 || Скачать
#5|| Properties of analytic function || Harmonic || function ||Property ||proof of cartesian form || Скачать
#44 || Problem#3 || Evaluate ∫〖𝟏𝟒𝒙+𝟓 𝒅𝒙〗 in [0,5] ||find 𝒍𝒐𝒈𝟓 || Simpson’s one third (𝟏⁄𝟑 𝒓𝒅) Rule. Скачать
#42 Problem#1|| Evaluate ∫〖𝟑𝒙^𝟐 𝒅𝒙〗 , [0, 6] || Simpson’s one third (𝟏⁄𝟑 𝒓𝒅) Rule || 18MAT21|| Скачать
#41||Numerical Integration || Simpson’s one third 1⁄3 rd & three eighth 3⁄8 th Rule ||Weddle’s Rule. Скачать
#40 || Numerical Integration || Introduction || Steps || Tabulation || Numerical Method|| 18MAT21|| Скачать
#3 || Theorem :1|| Cauchy's Riemann equation || Cartesian form || Calculus of complex functions || Скачать
#4 || Theorem: 2 ||Cauchy's Riemann equation || Polar form || Calculus of complex functions|18MAT41| Скачать
#43|| Problem#2 || Simpson’s one third 𝟏⁄𝟑 𝒓𝒅 rule || find ∫〖𝒆^〖−𝒙〗^𝟐 𝒅𝒙〗 in [0, 0.6] || 18MAT21|| Скачать
#1 || Introduction | Complex function || Basic concept || Complex number cartesian & polar form || Скачать
#17 || Problem#2|| Chi - Square Distribution || Poisson distribution || 18MAT41|| Sampling Theory || Скачать
#16 || Problem#1 || Chi - Square Distribution || Binomial Distribution || 18MAT41 || Sampling Theory Скачать
#15 | Chi Square Distribution || Introduction || Definition || Formula || 18MAT41 || Sampling Theory Скачать
#13 || Problem#1|| Introduction || Small sample test || Student's t distribution || 18MAT41|| Скачать
#10 Problem#1 Formula of Sample mean and Testing of Significance level of sample mean Problem Скачать
#9 ||Testing of Hypothesis||Sampling Distribution, Errors, Significance level Critical value table|| Скачать
#8 || Sampling Theory || Introduction || Definition || Population || Sample || Random Sampling || Скачать
#7 || Problems#5 || Covariance || Correlation || Joint Probability Distribution || 18MAT41 || Скачать
#6 || Problems#4 || Covariance || Correlation || Joint Probability Distribution || 18MAT41 || Скачать