Visuals to demonstrate how a neural network classifies a set of data. Thanks for watching!
Support me on Patreon! [ Ссылка ]
Source Code: [ Ссылка ]
Here's the course I referred to in the video. I am not affiliated with NYU.
[ Ссылка ]
Sinusoids as activation functions:
[ Ссылка ]
[ Ссылка ]
Here's the distill.pub article:
[ Ссылка ]
Special thanks to Alfredo Canziani and Nikhil Maserang for reviewing the video.
And also thanks to Grant Sanderson himself for giving me some manim tips!
I've been active on twitter, follow me here!
[ Ссылка ]
Join my discord server!
[ Ссылка ]
These animation in this video was made using 3blue1brown's library, manim:
[ Ссылка ]
Music is from GameChops (Route 113, Azalea Town, Ecruteak City
Follow me!
Website: [ Ссылка ]
Twitter: [ Ссылка ]
Github: [ Ссылка ]
Instagram: [ Ссылка ]
Patreon: [ Ссылка ]
What does a Neural Network *actually* do? Visualizing Deep Learning, Chapter 2
0:00 Intro
0:18 Recap of Part 1
1:57 Introducing the dataset
2:52 Structure of the Neural Network we’ll be using
3:34 What is softmax?
5:52 Input space decision boundaries
6:24 Modifying the Neural Network to visualize what it’s doing
7:36 Out-of-domain boundaries
8:46 sin(x) as an activation function
9:30 Neuron planes
11:57 Softmax surfaces
13:20 MNIST Transformation
13:42 Outro
Ещё видео!