An introduction to our forecasting package, #modeltime. Modeltime extends the tidymodels ecosystem for time series forecasting. Learn how to forecast with #ARIMA, #prophet, and linear regression #timeseries models.
GET THE CODE SHOWN IN THE VIDEO:
📰 Free R-Tips Newsletter (FREE R GitHub Code Access): [ Ссылка ]
📺 Set Up Your R-Tips Codebase (GitHub Video) [ Ссылка ]
Are you struggling to learn time series forecasting?
Do you need to make a career transition?
Would you like to become the forecasting expert for your organization?
Then read on...
🚀 MY COURSES WILL SKYROCKET YOUR CAREER IN WEEKS:
🆓FREE R-TRACK MASTERCLASS: [ Ссылка ]
📘 High-Performance Time Series Forecasting | DS4B 203-R (Learn Modeltime, TimeTK, Modeltime Gluonts, Modeltime H2O, and more) [ Ссылка ]
📚The 5-Course R-Track Program (Full System, Beginner to Expert, 12-18 months FASTER than other online programs) [ Ссылка ]
TABLE OF CONTENTS
00:00 Introduction to Modeltime
00:30 GitHub Project Setup
01:03 Libraries: Modeltime & Tidymodels
01:48 Data: DC Bike Sharing Daily
02:59 Train/Test Split
03:39 Forecasting (is Exciting!)
03:49 ARIMA (Automatic)
04:40 Prophet
05:24 GLMNET (Machine Learning)
06:32 Modeltime Workflow
06:46 Modeltime Table & Modeltime Calibrate
07:32 Modeltime Accuracy
08:12 Modeltime Forecast (Visualize Test Set)
09:00 Modeltime Refit & Forecast (Visualize Future Forecast)
09:42 How to Learn More!
Ещё видео!