[ Ссылка ] | Stateless transformations allow you to join streams and tables and to aggregate their contents. In this video, we show how to join a stream to a table and count unique occurrences of elements in the data.
MORE ON STREAMS
► Kafka Streams Documentation: [ Ссылка ]
► Kafka Streams Introduction: [ Ссылка ]
► Kafka Streams Examples: [ Ссылка ]
► Learn about Apache Kafka on Confluent Developer: [ Ссылка ]
► Kafka Streams 101 course: [ Ссылка ]
► Use CLOUD100 to get $100 of free Confluent Cloud usage: [ Ссылка ]
► Promo code details: [ Ссылка ]
ABOUT CONFLUENT
Confluent, founded by the creators of Apache Kafka®, enables organizations to harness business value of live data. The Confluent Platform manages the barrage of stream data and makes it available throughout an organization. It provides various industries, from retail, logistics and manufacturing, to financial services and online social networking, a scalable, unified, real-time data pipeline that enables applications ranging from large volume data integration to big data analysis with Hadoop to real-time stream processing. To learn more, please visit [ Ссылка ]
#streamprocessing #kafkastreams #kafka #apachekafka
4. Transforming Data Pt. II | Apache Kafka® Streams API
Теги
confluentapache kafkaopen sourcemessaging queuestreams apimicroservicesscalatim berglundkafka streamsdata in motionconfluent cloudstream processingevent-driven architecturekafka streams apistreams processingdistributed systemslambdakafkakafka streams joinkafka apikafka streams state storekafka clusteraggregate streamskafka streams aggregate examplestreams applicationkafka streams windowingkafka tutorialkafka dataquery