This video covers the process of encoding tabular data to prepare it as a feature vector for a PyTorch neural network. Tabular data, characterized by its structured form with rows and columns akin to a spreadsheet, often needs preprocessing before being fed into a neural network. The video covers essential techniques such as standardization and normalization. Standardization involves transforming the features to have a mean of 0 and a standard deviation of 1, often using the z-score, to make the training process more efficient. Normalization scales the variables to fall within a specific range, such as 0 to 1, making the data uniform. The presenter also explores the creation of dummy variables, which are binary columns created to represent categorical variables, thereby converting non-numeric data into a format that can be provided to a neural network. This comprehensive tutorial provides both theoretical insights and hands-on coding examples to help viewers understand and apply these critical preprocessing steps.
Code for This Video:
[ Ссылка ]
~~~~~~~~~~~~~~~ COURSE MATERIAL ~~~~~~~~~~~~~~~
📖 Textbook - Coming soon
😸🐙 GitHub - [ Ссылка ]
▶️ Play List - [ Ссылка ]
🏫 WUSTL Course Site - [ Ссылка ]
~~~~~~~~~~~~~~~ CONNECT ~~~~~~~~~~~~~~~
🖥️ Website: [ Ссылка ]
🐦 Twitter - [ Ссылка ]
😸🐙 GitHub - [ Ссылка ]
📸 Instagram - [ Ссылка ]
🦾 Discord: [ Ссылка ]
▶️ Subscribe: [ Ссылка ]
~~~~~~~~~~~~~~ SUPPORT ME 🙏~~~~~~~~~~~~~~
🅿 Patreon - [ Ссылка ]
🙏 Other Ways to Support (some free) - [ Ссылка ]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#PyTorch #NeuralNetworks #TabularData #DataPreprocessing #Standardization #Normalization #zscore #MachineLearning #FeatureEngineering #DummyVariables #AI #DeepLearning
Ещё видео!