We introduce the intermediate value theorem for continuous functions and see how to apply the intermediate value theorem to find the roots of an equation on an interval. The intermediate value theorem states that if f is a continuous function on a closed interval [a,b] then it must take on every value between f(a) and f(b) at some point in the interval. So if N is a number between f(a) and f(b) then there exists c in (a,b) such that f(c) = N. #calculus #apcalculus
Join Wrath of Math to get exclusive videos, lecture notes, and more:
[ Ссылка ]
Continuous Functions Explained: (coming soon)
The Extreme Value Theorem: [ Ссылка ]
Using Intermediate Value Theorem to Find Roots: [ Ссылка ]
Calculus 1 Exercises playlist: [ Ссылка ]
Calculus 1 playlist: [ Ссылка ]
Get the textbook for this course! [ Ссылка ]
★DONATE★
◆ Support Wrath of Math on Patreon: [ Ссылка ]
◆ Donate on PayPal: [ Ссылка ]
Follow Wrath of Math on...
● Instagram: [ Ссылка ]
● TikTok: [ Ссылка ]
● X: [ Ссылка ]
● Facebook: [ Ссылка ]
Ещё видео!