In this video, we learn how to massively speed-up NetworkX by using cuGraph or to be precise nx-cugraph in Python. This accelerates working with graphs by utilizing the GPU and CUDA.
Collab: [ Ссылка ]
Blog: [ Ссылка ]
nx-cugraph: [ Ссылка ]
◾◾◾◾◾◾◾◾◾◾◾◾◾◾◾◾◾
📚 Programming Books & Merch 📚
🐍 The Python Bible Book: [ Ссылка ]
💻 The Algorithm Bible Book: [ Ссылка ]
👕 Programming Merch: [ Ссылка ]
💼 Services 💼
💻 Freelancing & Tutoring: [ Ссылка ]
🌐 Social Media & Contact 🌐
📱 Website: [ Ссылка ]
📷 Instagram: [ Ссылка ]
🐦 Twitter: [ Ссылка ]
🤵 LinkedIn: [ Ссылка ]
📁 GitHub: [ Ссылка ]
🎙 Discord: [ Ссылка ]
NetworkX GPU Acceleration with cuGraph in Python
Теги
NetworkXcuGraphnx-cugraphPython graph analysisGPU accelerated graphCUDA for graphsPython GPU programmingNetworkX optimizationaccelerate NetworkXCUDA Python tutorialPython GPU tutorialNetworkX vs cuGraphgraph processing with GPUPython CUDA graph librariesGPU accelerated graph analyticsspeed up Python codePython graph performanceGPU graph algorithmsCUDA Python examplePython graph processing