We prove the sequence {1/n} is Cauchy using the definition of a Cauchy sequence! Since (1/n) converges to 0, it shouldn't be surprising that the terms of (1/n) get arbitrarily close together, and as we have proven (or will prove, depending where you're at), convergence and Cauchy-ness are equivalent, so (1/n) is Cauchy - let's prove it! #RealAnalysis
Besides the definition of Cauchy, the only thing we need is the Archimedean principle, proven here: [ Ссылка ]
Intro to Cauchy Sequences: [ Ссылка ]
Cauchy Sequences are Bounded: [ Ссылка ]
Sequence is Cauchy iff it is Convergent: [ Ссылка ]
Real Analysis playlist: [ Ссылка ]
Real Analysis Exercises: [ Ссылка ]
★DONATE★
◆ Support Wrath of Math on Patreon for early access to new videos and other exclusive benefits: [ Ссылка ]
◆ Donate on PayPal: [ Ссылка ]
Thanks to Robert Rennie, Barbara Sharrock, and Rolf Waefler for their generous support on Patreon!
Thanks to Crayon Angel, my favorite musician in the world, who upon my request gave me permission to use his music in my math lessons: [ Ссылка ]
Follow Wrath of Math on...
● Instagram: [ Ссылка ]
● Facebook: [ Ссылка ]
● Twitter: [ Ссылка ]
My Music Channel: [ Ссылка ]
Ещё видео!