For Making Active Components and Integrated Circuits
Ahemd Busnaina
---------------
To watch this presentation in full, please purchase
TechBlick Annual Pass at [ Ссылка ] and login to
TechBlick platform [ Ссылка ]
View more presentations like this on:
[ Ссылка ]
[ Ссылка ]
Upcoming Events:
[ Ссылка ]
The Future of Electronics RESHAPED Global:
[ Ссылка ]
[ Ссылка ]
MicroLED Connect and AR/VR Connect
[ Ссылка ]
---------------
We introduce a new sustainable and scalable technique to additively manufacture nano and microelectronics. The technique eliminates etching, vacuum deposition and other chemically intensive processing by utilizing direct assembly of nanoscale particles or other nanomaterials at room temperature and atmospheric pressure onto a substrate. The presented technology enables the printing of single crystal conductors and semiconductors [1]. The technology enables the additive manufacturing of passive and active components at the nano and microscale using a purely additive (directed assembly enabled) process utilizing inorganic semiconductors, metals, and dielectrics nanoparticles. The process demonstrates the manufacturing of transistors with an on/off ratio greater than 10 6 . This new technology enables the fabrication of nanoelectronics and electronic compenents while reducing the cost by 10-100 times and can print 1000 faster and 1000 smaller (down to 25nm) structures than ink-jet based printing. Printed applications such as transistors, diodes, display [2], MEMs [3] and all carbon electronics [4], and sensors at the micro and nanoscale using inorganic and organic materials will be presented. Nano OPS introduced the world’s first Nanoscale fully-automated printing system (NanoOPS) prototype with built-in alignment and registration. This is the only demonstrated solution for high-throughput printing of interconnects and circuit components at a scale equal to or less than 2 microns on rigid or flexible substrates. This new Fab-in-a-Box is designed to print electronics and products with minimum features down to 600 nm and is expected to democratize the electronics industry by eliminating the current high-cost entry barrier.
Ещё видео!