In this video explaining second order differential equation Runge kutta method. This method is very simple and easy steps. The Runge-Kutta method is a numerical method used to approximate the solution of a first-order ordinary differential equation (ODE) given an initial condition. The second-order Runge-Kutta method also known as the midpoint method is a commonly used variation of the Runge-Kutta method that is particularly useful for solving second-order differential equations.
#easymathseasytricks
LAPLACE TRANSFORM : 18MAT31
[ Ссылка ]_
Fourier Transforms,Z-transform : 18MAT31 & 17MAT31
[ Ссылка ]
Fourier Series: 18MAT31 & 17MAT31
[ Ссылка ]
Calculus of Variation & Numerical Methods 18MAT31
[ Ссылка ]
Numerical Methods ODE's: 18MAT31 & 17MAT41
[ Ссылка ]
COMPLEX NUMBER: 18MATDIP31
[ Ссылка ]
Differential Calculus:18MATDIP31
[ Ссылка ]
Ordinary differential equation 18MATDIP31 & 17MATDIP31
[ Ссылка ]
Integral Calculus 18MATDIP31 & 17MATDIP31
[ Ссылка ]
Vector differentiation 18MATDIP31 & 17MATDIP31
[ Ссылка ]
Differential Calculus & Partial Differential 18MATDIP31 & 17MATDIP31
[ Ссылка ]
Joint Probability & Sampling Theory: 18MAT41 & 17MAT41
[ Ссылка ]
Probability Distributions: 18MAT41 & 17MAT41
[ Ссылка ]
Calculus of Complex Functions: 18MAT41 & 17MAT41
[ Ссылка ]
Curve fitting & Statistical Method 18MAT41 17MAT31
[ Ссылка ]_
18MATDIP41 Linear Algebra
[ Ссылка ]
18MATDIP41 Numerical Methods
[ Ссылка ]
18MATDIP41 Higher order ODEs
[ Ссылка ]
18MATDIP41 Partial Differential Equations
[ Ссылка ]
Ещё видео!