We prove Stirling's Formula that approximates n! using Laplace's Method.
►Get my favorite, free calculator app for your phone or tablet: MAPLE CALCULATOR: [ Ссылка ]
►Check out MAPLE LEARN for your browser to make beautiful graphs and much more: [ Ссылка ]
►Check out Maplesoft's YouTube channel: [ Ссылка ]
In his video we prove Stirling's Approximation Formula that n! is approximately sqrt(2 pi n)(n/e)^n in the limit as n goes to infinity. Our proof has three main ingredients. Firstly, we use the Gamma Function definition of n! being a specific improper integral. We will manipulate this integral and apply Taylor's Approximation to turn it into a quadratic, a trick called Laplace's Method. Finally this will become a Gaussian integral and with a change of variables we will get Stirling's Formula.
Check out my MATH MERCH line in collaboration with Beautiful Equations
►[ Ссылка ]
Related Info:
►My video comparing n! and n^n: [ Ссылка ]
►Proof that the Gamma Function gives factorials: [ Ссылка ]
►The Gaussian Integral: [ Ссылка ]
►More reading on Laplace's Method: [ Ссылка ]
0:00 Stirling's Formula
0:55 Stirling's Formula graphically
2:25 The Gamma Function
3:09 Taylor Approximations
5:01 The Gaussian Integral
5:33 Laplace's Method
COURSE PLAYLISTS:
►DISCRETE MATH: [ Ссылка ]
►LINEAR ALGEBRA: [ Ссылка ]
►CALCULUS I: [ Ссылка ]
► CALCULUS II: [ Ссылка ]
►MULTIVARIABLE CALCULUS (Calc III): [ Ссылка ]
►VECTOR CALCULUS (Calc IV) [ Ссылка ]
►DIFFERENTIAL EQUATIONS: [ Ссылка ]
►LAPLACE TRANSFORM: [ Ссылка ]
►GAME THEORY: [ Ссылка ]
OTHER PLAYLISTS:
► Learning Math Series
[ Ссылка ]
►Cool Math Series:
[ Ссылка ]
BECOME A MEMBER:
►Join: [ Ссылка ]
MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: [ Ссылка ]
SOCIALS:
►Twitter (math based): [ Ссылка ]
►Instagram (photography based): [ Ссылка ]
Ещё видео!