In our introduction to Lagrange Multipliers we looked at the geometric meaning and saw an example when our goal was to optimize a function (i.e. find maximums and minimums) subject to ONE constraint:[ Ссылка ]
Now we are upgrading to the case of optimizing with two constraints. We will look at how to interpret the lagrange multiplier method geometrically for two constrains, and then see a full example. We will also look at the geometry of the special case of optimization function: the distance.
Geogebra Link for the animations at the end: [ Ссылка ]
0:00 Intro
0:38 Lagrange Multiplier Method
4:50 Example
12:30 Visulization
Click Multivariable Calculus playlist below for the rest of the series.
****************************************************
COURSE PLAYLISTS:
►CALCULUS I: [ Ссылка ]
► CALCULUS II: [ Ссылка ]
►MULTIVARIABLE CALCULUS (Calc III): [ Ссылка ]
►DIFFERENTIAL EQUATIONS (Calc IV): [ Ссылка ]
►DISCRETE MATH: [ Ссылка ]
►LINEAR ALGEBRA: [ Ссылка ]
***************************************************
► Want to learn math effectively? Check out my "Learning Math" Series:
[ Ссылка ]
►Want some cool math? Check out my "Cool Math" Series:
[ Ссылка ]
****************************************************
►Follow me on Twitter: [ Ссылка ]
*****************************************************
This video was created by Dr. Trefor Bazett. I'm an Assistant Teaching Professor at the University of Victoria.
BECOME A MEMBER:
►Join: [ Ссылка ]
MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: [ Ссылка ]
Ещё видео!