Hello, My name is Sunny Solanki and in this video tutorial, I explain how to create a Web App/Dashboard to classify images. We use a pre-trained ResNet-50 model available from PyTorch to classify images. Our App displays the original image, the top 5 categories that our model predicts for the image, and another chart highlighting pixels that contributed to predicting the top category. The tutorial is a good starting point for someone learning to build an image classifier app.
==================================================
CODE - [ Ссылка ]
===================================================
=======================================================
Useful Tutorials:
* Captum Tutorial - [ Ссылка ]
* PyTorch Image Classification Tutorial - [ Ссылка ]
* Streamlit Dashboard with Tabs - [ Ссылка ]
* Streamlit Basic Dashboard - [ Ссылка ]
=========================================================
Please feel free to visit CoderzColumn for more tutorials on Python.
Website: [ Ссылка ]
Tutorials: [ Ссылка ]
Python Tutorials: [ Ссылка ]
Data Science Tutorials: [ Ссылка ]
Machine Learning Tutorials: [ Ссылка ]
Artificial Intelligence Tutorials: [ Ссылка ]
======================================================
Social:
Twitter: [ Ссылка ]
LinkedIn: [ Ссылка ]
Facebook: [ Ссылка ]
#python #datavisualization #dataviz #style #layout #dashboard #charts #interactive #streamlit #imageclassification #pytorch #widgets #datascience #datasciencetutorial #python #pythonprogramming #pythoncode #pythontutorial #imageclassifier #mlapp #ai #streamlitapp #how-to-create-website-using-streamlit #streamlit-tutorial-python #image-classification-web-app #image-classification-python #image-recognition-python #image-classification-project
Ещё видео!