PyData DC 2018
To productionize data science work (and have it taken seriously by software engineers, CTOs, clients, or the open source community), you need to write tests! Except… how can you test code that performs nondeterministic tasks like natural language parsing and modeling? This talk presents an approach to testing probabilistic functions in code, illustrated with concrete examples written for Pytest.
Slides - [ Ссылка ]
===
www.pydata.org
PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.
PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.
Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: [ Ссылка ]
Ещё видео!