00:00:00 - Introduction
00:00:15 - Optimization
00:01:20 - Local Search
00:07:24 - Hill Climbing
00:29:43 - Simulated Annealing
00:40:43 - Linear Programming
00:51:03 - Constraint Satisfaction
00:59:17 - Node Consistency
01:03:03 - Arc Consistency
01:16:53 - Backtracking Search
This course explores the concepts and algorithms at the foundation of modern artificial intelligence, diving into the ideas that give rise to technologies like game-playing engines, handwriting recognition, and machine translation. Through hands-on projects, students gain exposure to the theory behind graph search algorithms, classification, optimization, reinforcement learning, and other topics in artificial intelligence and machine learning as they incorporate them into their own Python programs. By course's end, students emerge with experience in libraries for machine learning as well as knowledge of artificial intelligence principles that enable them to design intelligent systems of their own.
[ Ссылка ]
***
This is CS50, Harvard University's introduction to the intellectual enterprises of computer science and the art of programming.
***
HOW TO SUBSCRIBE
[ Ссылка ]
HOW TO TAKE CS50
edX: [ Ссылка ]
Harvard Extension School: [ Ссылка ]
Harvard Summer School: [ Ссылка ]
OpenCourseWare: [ Ссылка ]
HOW TO JOIN CS50 COMMUNITIES
Discord: [ Ссылка ]
Ed: [ Ссылка ]
Facebook Group: [ Ссылка ]
Faceboook Page: [ Ссылка ]
GitHub: [ Ссылка ]
Gitter: [ Ссылка ]
Instagram: [ Ссылка ]
LinkedIn Group: [ Ссылка ]
LinkedIn Page: [ Ссылка ]
Quora: [ Ссылка ]
Slack: [ Ссылка ]
Snapchat: [ Ссылка ]
Twitter: [ Ссылка ]
YouTube: [ Ссылка ]
HOW TO FOLLOW DAVID J. MALAN
Facebook: [ Ссылка ]
GitHub: [ Ссылка ]
Instagram: [ Ссылка ]
LinkedIn: [ Ссылка ]
Quora: [ Ссылка ]
Twitter: [ Ссылка ]
***
CS50 SHOP
[ Ссылка ]
***
LICENSE
CC BY-NC-SA 4.0
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License
[ Ссылка ]
David J. Malan
[ Ссылка ]
malan@harvard.edu
Ещё видео!