Modern cells and “pre-biotic life” managed to spatially control chemical reactions and the formation of complex assemblies such as organelles or transport channels that are embedded in membranes. A key question in modern biophysics is to unravel the physical principles underlying the control of chemical reactions and the emergence of functional assemblies. A simplified bottom-up approach for both systems is the model of a complex aqueous mixture composed of a large number of different heteropolymers which can undergo chemical reactions away from equilibrium. Interestingly, once such mixtures phase-separate they can mimic various features known from living systems such as growth, division, selection and the regulation of reaction cycles.
In my talk, I will give an overview of how the physics of phase separation can be relevant for living systems. In particular, I will discuss two simple examples: First, I will illustrate the capacity of phase-separated condensates to affect non-equilibrium biochemical reactions. This property is relevant for protein condensates in living cell to regulate the intra-cellular biochemistry. Second, I discuss a physical mechanism of how specific molecules could have been selected just before the origin of life.
Ещё видео!