Why Redpanda chose C++ and how does JVM impact performance? This video explains the ups and downs of data latency.
Blog
----------------------
Thread-per-core buffer management for a modern Kafka-API storage system - Alexander Gallego
[ Ссылка ]
Evaluating Graviton 2 for data-intensive applications: An Arm vs Intel comparison - Travis Downs
[ Ссылка ]
Autotune series: Part 1 - storage - Michal MaslankaAlexander Gallego
[ Ссылка ]
Video
----------------------
Redpanda: A new storage engine with Kernel bypass technologies for 10x lower tail latencies - Alexander Gallego
[ Ссылка ]
Real Time with Redpanda, Episode 5: Internal communication infrastructure of Redpanda - Alexander Gallego
[ Ссылка ]
LinkedIn + Redpanda Fireside Chat - Alexander Gallego
[ Ссылка ]
To learn more about Redpanda, the Kafka® API-compatible streaming data platform for developers, visit [ Ссылка ]:
◦ The Kafka API is great; now let's make it fast! - [ Ссылка ]
◦ How Redpanda’s cloud-first storage model reduces TCO - [ Ссылка ]
◦ Validating consistency and the absence of data loss in Redpanda - [ Ссылка ]
◦ Exploring the benefits of single-binary architecture - [ Ссылка ]
Join our Slack community! [ Ссылка ]
Contribute to our GitHub repository: [ Ссылка ]
___
Redpanda is a Kafka® API-compatible streaming data platform for developers, built from the ground up to eliminate complexity, maximize performance, and reduce total costs. Its lean and efficient architecture eliminates categorical dependencies while squeezing the most out of your resources to give you 10x lower latencies and up to 6x lower cloud spend— without sacrificing your data’s reliability or durability.
Follow us on social media:
Twitter - [ Ссылка ]
LinkedIn - [ Ссылка ]
Ещё видео!