Livestream
integral | indefinite integral | jee Main Jan.9,2020(I)
integral
indefinite integral
indefinite integral calculus
indefinite integrals class 12
indefinite integrals class 12 one shot
indefinite integrals class 12 in bengali
indefinite integral engineering mathematics
indefinite integrals class 12 jee
indefinite integral nda
indefinite integrals jee
indefinite integrals class 12 rd sharma solutions
#Livestream
#integral
#jeeMainJan.9,2020(I)
#indefiniteintegral
#indefiniteintegralcalculus
#indefiniteintegralsclass12
#indefiniteintegralsclass12oneshot
#indefiniteintegralsclass12inbengali
#indefiniteintegralengineeringmathematics
#indefiniteintegralsclass12jee
#indefiniteintegralnda
#indefiniteintegralsjee
#indefiniteintegralsclass12rdsharmasolutions
An indefinite integral is a fundamental concept in calculus that represents the antiderivative of a function. It essentially answers the question: "What function, when differentiated, results in the given function?"
Key Concepts:
General Definition: The indefinite integral of a function f(x)f(x) is written as:
∫f(x) dx\int f(x) \, dx
It represents the collection of all functions whose derivative is f(x)f(x).
Constant of Integration: Since the derivative of a constant is zero, there can be infinitely many functions whose derivative is f(x)f(x). Therefore, the indefinite integral includes a constant of integration CC, which accounts for any constant added to the antiderivative:
∫f(x) dx=F(x)+C\int f(x) \, dx = F(x) + C
where F(x)F(x) is any antiderivative of f(x)f(x).
Antiderivative: An antiderivative of a function f(x)f(x) is a function F(x)F(x) such that:
F′(x)=f(x)F'(x) = f(x)
For example, if f(x)=2xf(x) = 2x, the antiderivative is F(x)=x2F(x) = x^2, and the indefinite integral is:
∫2x dx=x2+C\int 2x \, dx = x^2 + C
Basic Integration Rules: There are several standard rules for evaluating indefinite integrals:
Power Rule: For any real number n≠−1n \neq -1:
∫xn dx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C
Sum Rule: The integral of a sum is the sum of the integrals:
∫(f(x)+g(x)) dx=∫f(x) dx+∫g(x) dx\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx
Constant Multiple Rule: If kk is a constant:
∫k⋅f(x) dx=k⋅∫f(x) dx\int k \cdot f(x) \, dx = k \cdot \int f(x) \, dx
Exponential Rule: For exe^x, the antiderivative is simply:
∫ex dx=ex+C\int e^x \, dx = e^x + C
Trigonometric Integrals: Common integrals for trigonometric functions include:
∫sin(x) dx=−cos(x)+C,∫cos(x) dx=sin(x)+C\int \sin(x) \, dx = -\cos(x) + C, \quad \int \cos(x) \, dx = \sin(x) + C
Techniques of Integration: In more complex cases, specific techniques are used to evaluate indefinite integrals:
Substitution: This method is useful when the integrand is a composite function. You substitute a part of the function with a new variable to simplify the integral.
Integration by Parts: This technique is based on the product rule for differentiation. If you have two functions u(x)u(x) and v(x)v(x), you can use:
∫u(x)v′(x) dx=u(x)v(x)−∫v(x)u′(x) dx\int u(x) v'(x) \, dx = u(x) v(x) - \int v(x) u'(x) \, dx
Partial Fractions: This technique is often used when integrating rational functions, by expressing the function as a sum of simpler fractions.
Example of an Indefinite Integral:
Let’s compute the indefinite integral of f(x)=3x2f(x) = 3x^2:
∫3x2 dx\int 3x^2 \, dx
Using the power rule, we increase the exponent by 1 (from 2 to 3) and divide by the new exponent:
=3x33+C=x3+C= \frac{3x^3}{3} + C = x^3 + C
Thus, the indefinite integral is x3+Cx^3 + C.
In summary, an indefinite integral gives a family of functions (the antiderivatives) whose derivative is the integrand.
Ещё видео!