Missing data is probably one of the most common issues when working with real datasets. Data can be missing for a multitude of reasons, including sensor failure, data vintage, improper data management, and even human error. Missing data can occur as single values, multiple values within one feature, or entire features may be missing.
It is important that missing data is identified and handled appropriately prior to further data analysis or machine learning. Many machine learning algorithms can’t handle missing data and require entire rows, where a single missing value is present, to be deleted or replaced (imputed) with a new value.
If you haven't already, make sure you subscribe to the channel: [ Ссылка ]
----
The notebook for this video can be found on my GitHub repository at: [ Ссылка ]
There is a written version of this video available at: [ Ссылка ]
Libraries used in this video:
pandas: [ Ссылка ]
missingno: [ Ссылка ]
Data Used in this video:
Bormann, Peter, Aursand, Peder, Dilib, Fahad, Manral, Surrender, & Dischington, Peter. (2020). FORCE 2020 Well well log and lithofacies dataset for machine learning competition [Data set]. Zenodo. [ Ссылка ]
Books I Recommend:
As an Amazon Associate I earn from qualifying purchases. By buying through any of the links below I will earn commission at no extra cost to you.
PYTHON FOR DATA ANALYSIS: Data Wrangling with Pandas, NumPy, and IPython
UK: [ Ссылка ]
US: [ Ссылка ]
FUNDAMENTALS OF PETROPHYSICS
UK: [ Ссылка ]
PETROPHYSICS: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties
UK: [ Ссылка ]
US: [ Ссылка ]
WELL LOGGING FOR EARTH SCIENTISTS
UK: [ Ссылка ]
US: [ Ссылка ]
GEOLOGICAL INTERPRETATION OF WELL LOGS
UK: [ Ссылка ]
US: [ Ссылка ]
-----
Thanks for watching, if you want to connect you can find me at the links below:
[ Ссылка ]
[ Ссылка ]
[ Ссылка ]
[ Ссылка ]
#missingdata #petrophysics #machinelearning #geoscience #missingno #python
Ещё видео!