NASA announced that three U.S. companies will develop the human landers that will land astronauts on the Moon beginning in 2024 as part of the Artemis program. The agency is planning crewed demonstration missions to the lunar surface beginning in 2024. The initial demonstration missions represent a return to the Moon for the first time since 1972, but with several key differences, including the use of 21st century technologies and access to more parts of the Moon. Later sustainable demonstration missions will make full use of the Gateway-enabled capabilities, including refueling and reuse of all or parts of the lander. This approach allows NASA and industry to combine their respective expertise and capabilities into tightly collaborative partnerships needed to meet this challenge before achieving a regular cadence of missions using commercial services contracts later in the decade. To start, the companies will begin work in an approximate 10-month base period outlined in the NextSTEP-2 Appendix H BAA. During the base period, NASA teams will be embedded with the companies to help streamline the review of required deliverables to NASA and to impart expertise that the agency has acquired over the last 60 years of human spaceflight systems development. “NASA has a proven track record for landing people and cargo on other planetary surfaces,” said Lisa Watson-Morgan, Human Landing System program manager at NASA’s Marshall Space Flight Center in Huntsville. “It’s an amazing time to be with NASA partnering with U.S. Industry and our focused goals of landing humans on the Moon by 2024.” The concepts are outlined below in alphabetical order. Blue Origin - Blue Origin is the prime contractor for the National Team that includes Lockheed Martin, Northrop Grumman, and Draper. Their Integrated Lander Vehicle (ILV) is a three-stage lander that harnesses the proven spaceflight heritage of each team. Blue Origin will build the descent element which is powered by BE-7 cryogenic engines three years in private development, with cryogenic technologies now under Tipping Point support. Lockheed will build the ascent element that includes the crew cabin, which will have significant commonality with Orion. Northrop Grumman will build the transfer element based largely on its Cygnus cargo module that services the International Space Station. Northrop Grumman is also leading development of a future refueling element for a sustainable lander demonstration. Draper will provide the guidance, navigation and control, avionics, and software systems that draw largely on similar systems the company has developed for NASA. In their proposal, the National Team outlines a plan in which the ILV can dock with either Orion or the Gateway to await crew arrival. The Blue Origin National Team’s elements for the Human Landing System can be launched individually on commercial rockets or combined to launch on NASA’s Space Launch System.Dynetics - Dynetics proposed a robust team with more than 25 subcontractors specializing in both the larger elements and the smaller system-level components of the Dynetics Human Landing System. The Dynetics Human Landing System concept includes a single element providing the ascent and descent capabilities, with multiple modular propellant vehicles prepositioned to fuel the engines at different points in the mission. The crew cabin sits low to the surface, enabling a short climb for astronauts entering, exiting, or transporting tools and samples. The DHLS systems supports both docking with Orion and with Gateway, and will get a fuel top-off before descending to the surface. After the surface expedition, the entire vehicle will return for crew transfer back to Orion. The Dynetics Human Landing System is rocket-agnostic, capable of launching on multiple rockets. SpaceX - Starship is a fully reusable launch and landing system designed for travel to the Moon, Mars, and other destinations. The system leans on the company’s tested Raptor engines and flight heritage of the Falcon and Dragon vehicles. Starship includes a spacious cabin and two airlocks for astronaut moonwalks. Several Starships serve distinct purposes in enabling human landing missions, each based on the common Starship design. A propellant storage Starship will park in low-Earth orbit to be supplied by tanker Starships. The human-rated Starship will launch to the storage unit in Earth orbit, fuel up, and continue to lunar orbit. NASA got a jump-start in some of those advanced systems through work When NASA sends astronauts to the surface of the Moon in 2024, it will be the first time generations of people will witness humans walking on another planetary body, outside of watching historical footage from Apollo. Building on these footsteps, future robotic and human explorers will put infrastructure in place for a long-term sustainable presence on the Moon.
Ещё видео!