📝 Find more here: [ Ссылка ]
👍 Support the channel on Steady: [ Ссылка ]
Other possibilities here: [ Ссылка ]
You can also support me via PayPal: [ Ссылка ]
Or via Ko-fi: [ Ссылка ]
Or via Patreon: [ Ссылка ]
Or via other methods: [ Ссылка ]
Join this channel on YouTube: [ Ссылка ]
💬 Access to the community forum: [ Ссылка ]
🕚 Early access for videos: [ Ссылка ]
❓ FAQ: [ Ссылка ]
🛠️ What tools do you use: [ Ссылка ]
📚 Download my books: [ Ссылка ]
Please consider to support me if this video was helpful such that I can continue to produce them :)
Each supporter gets access to the additional material. If you need more information, just send me an email: [ Ссылка ]
Watch the whole video series about Linear Algebra and download PDF versions, quizzes and exercises: [ Ссылка ]
Supporting me via Steady is the best option for me and you. Please consider choosing a supporter package here: [ Ссылка ]
🌙 There is also a dark mode version of this video: [ Ссылка ]
🔆 There is also a bright mode version of this video: [ Ссылка ]
🙏 Thanks to all supporters! They are mentioned in the credits of the video :)
This is my video series about Linear Algebra. We talk about matrices, linear maps, eigenvalues, eigenvectors, basis, linear span, linear independent sets, and a lot more. I hope that it will help everyone who wants to learn about it.
x
00:00 Introduction
00:08 Example with a 3x4 matrix
00:32 Definition of the kernel
01:53 Row operations don't change the kernel
03:10 Creating zeros in second column
03:54 Row echelon form
04:45 Stating equation with variables
05:36 Backwards substitution
06:50 Solution set
07:45 Rewriting solution set as a span
08:30 Basis of the kernel
#LinearAlgebra
#Vectors
#Matrices
#MachineLearning
#Eigenvalues
#Calculus
#Mathematics
(This explanation fits to lectures for students in their first year of study: Mathematics for physicists, Mathematics for the natural science, Mathematics for engineers and so on)
For questions, you can contact me: [ Ссылка ]
Ещё видео!