Learn new ways to optimize speed and memory performance when you convert and run machine learning and AI models through Core ML. We’ll cover new options for model representations, performance insights, execution, and model stitching which can be used together to create compelling and private on-device experiences.
Discuss this video on the Apple Developer Forums:
[ Ссылка ]
Explore related documentation, sample code, and more:
Stable Diffusion with Core ML on Apple Silicon: [ Ссылка ]
Core ML: [ Ссылка ]
Introducing Core ML: [ Ссылка ]
Improve Core ML integration with async prediction: [ Ссылка ]
Use Core ML Tools for machine learning model compression: [ Ссылка ]
Convert PyTorch models to Core ML: [ Ссылка ]
00:00 - Introduction
01:07 - Integration
03:29 - MLTensor
08:30 - Models with state
12:33 - Multifunction models
15:27 - Performance tools
More Apple Developer resources:
Video sessions: [ Ссылка ]
Documentation: [ Ссылка ]
Forums: [ Ссылка ]
App: [ Ссылка ]
Ещё видео!