There are various approaches to measuring unfairness in machine learning models. We explore how to use accuracy and 3 definitions of fairness - Equal Opportunity, Equalized Odds & Disparate Impact. We shed light on the nuanced ways in which fairness can be understood in the context of algorithmic decision-making. Join us as we navigate this crucial topic, providing you with a comprehensive understanding of fairness in machine learning and its implications for building just and equitable AI systems.
*NOTE*: You will now get the XAI course for free if you sign up (not the SHAP course)
SHAP course: [ Ссылка ]
XAI course: [ Ссылка ]
Newsletter signup: [ Ссылка ]
Read the companion article (no-paywall link):
[ Ссылка ]
Other articles you may find useful:
Introduction to Algorithm Fairness: [ Ссылка ]
Reasons for Unfairness: [ Ссылка ]
Correcting Fairness: [ Ссылка ]
Medium: [ Ссылка ]
Twitter: [ Ссылка ]
Mastodon: [ Ссылка ]
Website: [ Ссылка ]
Ещё видео!