The rank of a matrix is the number of linearly independent rows or the number of linearly independent columns the matrix has. These definitions are equivalent. To find this number, we can reduce a matrix to row echelon form and count the nonzero rows, whose leading entries are called pivot numbers. We'll solve five rank of a matrix examples in this lesson. #linearalgebra
Join Wrath of Math to get exclusive videos, music, and more:
[ Ссылка ]
Find Rank of a Matrix by Inspection: [ Ссылка ]
Find Rank of a 3x3 Matrix: [ Ссылка ]
Find Rank of a 4x4 Matrix: [ Ссылка ]
Finding Basis for the Row Space of a Matrix: [ Ссылка ]
Linear Algebra course: [ Ссылка ]
Linear Algebra exercises: [ Ссылка ]
◉Textbooks I Like◉
Graph Theory: [ Ссылка ]
Real Analysis: [ Ссылка ]
Proofs and Set Theory: [ Ссылка ] (available for free online)
Statistics: [ Ссылка ]
Abstract Algebra: [ Ссылка ]
Discrete Math: [ Ссылка ]
Number Theory: [ Ссылка ]
★DONATE★
◆ Support Wrath of Math on Patreon for early access to new videos and other exclusive benefits: [ Ссылка ]
◆ Donate on PayPal: [ Ссылка ]
Thanks to Petar, dric, Rolf Waefler, Robert Rennie, Barbara Sharrock, Joshua Gray, Karl Kristiansen, Katy, Mohamad Nossier, and Shadow Master for their generous support on Patreon!
Thanks to Crayon Angel, my favorite musician in the world, who upon my request gave me permission to use his music in my math lessons: [ Ссылка ]
Follow Wrath of Math on...
● Instagram: [ Ссылка ]
● Facebook: [ Ссылка ]
● Twitter: [ Ссылка ]
My Math Rap channel: [ Ссылка ]
Ещё видео!