In this short Python EDA tutorial, we will cover the use of an excellent Python library called Pandas Profiling. This library helps us carry fast and automatic EDA on our dataset with minimal lines of code.
Exploratory Data Analysis (EDA) is an important and essential part of the data science and machine learning workflow. It allows us to become familiar with our data by exploring it, from multiple angles, through statistics, data visualisations, and data summaries. This helps discover patterns in the data, spot outliers, and gain a solid understanding of the data we are working with.
⭐️ If you haven't already, make sure you subscribe to the channel: [ Ссылка ]
▼ ---- SUPPORT THE CHANNEL ---- ▼
☕️ BUY ME A COFFEE: [ Ссылка ]
▼ ---- RECOMMENDED BOOKS ---- ▼
As an Amazon Associate I earn from qualifying purchases. By buying through any of the links below I will earn commission at no extra cost to you.
PYTHON FOR DATA ANALYSIS: Data Wrangling with Pandas, NumPy, and IPython
UK: [ Ссылка ]
US: [ Ссылка ]
FUNDAMENTALS OF PETROPHYSICS
UK: [ Ссылка ]
PETROPHYSICS: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties
UK: [ Ссылка ]
US: [ Ссылка ]
WELL LOGGING FOR EARTH SCIENTISTS
UK: [ Ссылка ]
US: [ Ссылка ]
GEOLOGICAL INTERPRETATION OF WELL LOGS
UK: [ Ссылка ]
US: [ Ссылка ]
▼ ---- SOCIAL CHANNELS ---- ▼
Thanks for watching, if you want to connect you can find me at the links below:
[ Ссылка ]
[ Ссылка ]
[ Ссылка ]
[ Ссылка ]
Be sure to sign up for my newsletter to be kept updated when I post and share new content on YouTube and Medium.
[ Ссылка ]
#datascience #petrophysics #python #geoscience #eda
Ещё видео!