Support Vector Machines are one of the most mysterious methods in Machine Learning. This StatQuest sweeps away the mystery to let know how they work.
Part 2: The Polynomial Kernel: [ Ссылка ]
Part 3: The Radial (RBF) Kernel: [ Ссылка ]
NOTE: This StatQuest assumes you already know about...
The bias/variance tradeoff: [ Ссылка ]
Cross Validation: [ Ссылка ]
ALSO NOTE: This StatQuest is based on description of Support Vector Machines, and associated concepts, found on pages 337 to 354 of the Introduction to Statistical Learning in R: [ Ссылка ]
I also found this blogpost helpful for understanding the Kernel Trick: [ Ссылка ]
For a complete index of all the StatQuest videos, check out:
[ Ссылка ]
If you'd like to support StatQuest, please consider...
Buying The StatQuest Illustrated Guide to Machine Learning!!!
PDF - [ Ссылка ]
Paperback - [ Ссылка ]
Kindle eBook - [ Ссылка ]
Patreon: [ Ссылка ]
...or...
YouTube Membership: [ Ссылка ]
...a cool StatQuest t-shirt or sweatshirt:
[ Ссылка ]
...buying one or two of my songs (or go large and get a whole album!)
[ Ссылка ]
...or just donating to StatQuest!
[ Ссылка ]
Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter:
[ Ссылка ]
0:00 Awesome song and introduction
0:40 Basic concepts and Maximal Margin Classifiers
4:35 Soft Margins (allowing misclassifications)
6:46 Soft Margin and Support Vector Classifiers
12:23 Intuition behind Support Vector Machines
15:25 The polynomial kernel function
17:30 The radial basis function (RBF) kernel
18:32 The kernel trick
19:31 Summary of concepts
#statquest #SVM
Ещё видео!