The British Aircraft Corporation TSR-2 is a cancelled Cold War strike and reconnaissance aircraft developed by the British Aircraft Corporation (BAC), for the Royal Air Force (RAF) in the late 1950s and early 1960s. The TSR-2 was designed around both conventional and nuclear weapons delivery: it was to penetrate well-defended frontline areas at low altitudes and very high speeds, and then attack high-value targets in rear areas. Another intended combat role was to provide high-altitude, high-speed stand-off, side-looking radar and photographic imagery and signals intelligence, aerial reconnaissance. Only one airframe flew and test flights and weight-rise during design indicated that the aircraft would be unable to meet its original stringent design specifications. The design specifications were reduced as the result of flight testing.
The TSR-2 was the victim of ever-rising costs and inter-service squabbling over Britain's future defence needs, which together led to the controversial decision in 1965 to scrap the programme. It was decided to order an adapted version of the General Dynamics F-111 instead, but that decision was later rescinded as costs and development times increased. The replacements included the Blackburn Buccaneer and McDonnell Douglas F-4 Phantom II, both of which had previously been considered and rejected early in the TSR-2 procurement process. Eventually, the smaller swing-wing Panavia Tornado was developed and adopted by a European consortium to fulfil broadly similar requirements to the TSR-2.
The introduction of the first jet engines in the late-World War II period led to calls for new jet-powered versions of practically every aircraft then flying. Among these was the design of a replacement for the de Havilland Mosquito, at that time among the world's leading medium bombers. The Mosquito had been designed with the express intent of reducing the weight of the aircraft in order to improve its speed as much as possible. This process led to the removal of all defensive armament, improving performance to the point where it was unnecessary anyway. This high-speed approach was extremely successful, and a jet-powered version would be even more difficult to intercept.
This led to Air Ministry specification E.3/45. The winning design, the English Electric Canberra, also dispensed with defensive armament, producing a design with the speed and altitude that allowed it to fly past most defences. The design's large wings gave it the lift needed to operate at very high altitudes, placing it above the range where even jet powered fighters were able to intercept it. The Canberra could simply fly over its enemy with relative impunity, a quality that made it naturally suited to aerial reconnaissance missions. The design was so successful that it was licensed for production in the United States, one of very few such cases. The Martin RB-57D and RB-57F American-built reconnaissance subtypes further extended the wings up to a 37.5 m (123 ft) span for extremely high altitude capabilities.
This high-speed, high-altitude approach was effective until the late 1950s, when the Soviet Union began to introduce its first surface-to-air missiles (SAMs). SAMs had speed and altitude performance much greater than any contemporary aircraft. The Canberra, and other high-altitude aircraft like the British V bombers or United States' Boeing B-52 Stratofortress, were extremely vulnerable to these weapons.
General characteristics
Crew: 2
Length: 89 ft (27 m)
Wingspan: 37 ft 2 in (11.33 m)
Height: 23 ft 9 in (7.24 m)
Wing area: 702.9 sq ft (65.30 m2)
Empty weight: 54,750 lb (24,834 kg)
Gross weight: 79,573 lb (36,094 kg)
Max takeoff weight: 103,500 lb (46,947 kg)
Powerplant: 2 × Bristol Siddeley B.Ol.22R Olympus Mk.320 afterburning turbojet engines, 22,000 lbf (98 kN) thrust each dry, 30,610 lbf (136.2 kN) with afterburner
Performance:
Maximum speed: Mach 2.15 at 40,000 ft (12,192 m), M1.1 at sea level
Range: 2,500 nmi (2,900 mi, 4,600 km)
Combat range: 750 nmi (860 mi, 1,390 km)
Service ceiling: 40,000 ft (12,000 m)
Rate of climb: 15,000 ft/min (76 m/s)
Thrust/weight: 0.59
Armament
Total weapons load of 10,000 lb (4,500 kg); 6,000 lb (2,700 kg) internal and 4,000 lb (1,800 kg) external
Internal weapons bay, 20 ft (6 m) long, with (initially) 1 Red Beard 15 kt nuclear weapon or as intended 2 × OR.1177 300 kt nuclear weapons or 6 × 1,000 lb (450 kg) HE bombs. Final designed normal load in nuclear role of up to 4 × WE.177 nuclear weapons, two side-by-side or in tandem in weapons bay, two on external underwing stores pylons.
Avionics
Autonetics Verdan autopilot modified by Elliot Automation
Ferranti (terrain-following radar and navigation/attack systems)
EMI (Side looking airborne radar)
Marconi (general avionics)
Cossor (IFF)
Plessey (Radio)
#TSR2 #BACTSR2 #supersonic
Ещё видео!