In this video, I have invited my friend Yuan for a mini course on application of Causal Inference in tech companies. This is going to be a video series. In this video, we are going to focus on the methods of Regression and Matching.
📃Yuan's blog post on causal inference [ Ссылка ]
📚References recommended by Yuan
- Huntington-Klein, N. (2021). The effect. Routledge.
- Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27-42.
- Taylor, S. (2021, July 15). When do we actually need causal inference?. Lander Analytics. [ Ссылка ]
- A/B Testing Pitfalls [ Ссылка ]
🟢Get all my free data science interview resources
[ Ссылка ]
🟡 Product Case Interview Cheatsheet [ Ссылка ]
🟠 Statistics Interview Cheatsheet [ Ссылка ]
🟣 Behavioral Interview Cheatsheet [ Ссылка ]
🔵 Data Science Resume Checklist [ Ссылка ]
✅ We work with Experienced Data Scientists to help them land their next dream jobs. Apply now: [ Ссылка ]
// Comment
Got any questions? Something to add?
Write a comment below to chat.
// Let's connect on LinkedIn:
[ Ссылка ]
====================
Contents of this video:
====================
00:00 Topic Of Video
01:10 Why Learn Casual Inference
08:16 Regression
09:58 Pitfalls in Regression
16:16 Matching
18:12 Propensity Score Matching
Ещё видео!