This talk was given at ODSC-West 2022 in San Francisco.
[ Ссылка ]
Abstract
---
When putting models into production it’s critical to know how they’re performing over time. As the last mile of the data pipeline, models can be impacted by a variety of issues, often outside the control of the data science team. “Observability” promises to help teams detect and prevent issues that could impact their models—but what is observability vs. data observability vs. ML observability? Get practical answers and recommendations from Kyle Kirwan, former product leader for Uber’s metadata tools, and founder of data observability company, Bigeye.
Ещё видео!