This is an audio version of the Wikipedia Article:
[ Ссылка ]
00:02:26 1 Definitions and distinctions
00:03:55 2 Etymology
00:04:15 3 Cryogenic fluids
00:04:31 4 Industrial applications
00:06:13 4.1 Cryogenic processing
00:09:32 4.2 Fuels
00:10:42 5 Other applications
00:15:01 6 Production
00:15:51 7 Detectors
00:16:27 8 See also
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
[ Ссылка ]
Other Wikipedia audio articles at:
[ Ссылка ]
Upload your own Wikipedia articles through:
[ Ссылка ]
Speaking Rate: 0.8114791626821095
Voice name: en-US-Wavenet-A
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
In physics, cryogenics is the production and behaviour of materials at very low temperatures. A person who studies elements that have been subjected to extremely cold temperatures is called a cryogenicist.
It is not well-defined at what point on the temperature scale refrigeration ends and cryogenics begins, but scientists assume a gas to be cryogenic if it can be liquefied at or below −150 °C (123 K; −238 °F). The U.S. National Institute of Standards and Technology has chosen to consider the field of cryogenics as that involving temperatures below −180 °C (93 K; −292 °F). This is a logical dividing line, since the normal boiling points of the so-called permanent gases (such as helium, hydrogen, neon, nitrogen, oxygen, and normal air) lie below −180 °C while the Freon refrigerants, hydrocarbons, and other common refrigerants have boiling points above −180 °C.Discovery of superconducting materials with critical temperatures significantly above the boiling point of liquid nitrogen has provided new interest in reliable, low cost methods of producing high temperature cryogenic refrigeration. The term "high temperature cryogenic" describes temperatures ranging from above the boiling point of liquid nitrogen, −195.79 °C (77.36 K; −320.42 °F), up to −50 °C (223 K; −58 °F), the generally defined upper limit of study referred to as cryogenics.Cryogenicists use the Kelvin or Rankine temperature scale, both of which measure from absolute zero, rather than more usual scales such as Celsius or Fahrenheit, with their zeroes at arbitrary temperatures.
Ещё видео!