"Causal Mediation Analysis for Sparse and Irregular Longitudinal Data"
Fan Li, Duke University
Discussant: Georgia Papadogeorgou, University of Florida
Abstract: Causal mediation analysis seeks to investigate how the treatment effect of an exposure on outcomes is mediated through intermediate variables. Although many applications involve longitudinal data, the existing methods are not directly applicable to settings where the mediator and outcome are measured on sparse and irregular time grids. We extend the existing causal mediation framework from a functional data analysis perspective, viewing the sparse and irregular longitudinal data as realizations of underlying smooth stochastic processes. We define causal estimands of direct and indirect effects accordingly and provide corresponding identification assumptions. For estimation and inference, we employ a functional principal component analysis approach for dimension reduction and use the first few functional principal components instead of the whole trajectories in the structural equation models. We adopt the Bayesian paradigm to accurately quantify the uncertainties. The operating characteristics of the proposed methods are examined via simulations. We apply the proposed methods to a longitudinal data set from a wild baboon population in Kenya to investigate the causal relationships between early adversity, strength of social bonds between animals, and adult glucocorticoid hormone concentrations. I will focus on main ideas and try to avoid complex notations (common in mediation analysis) as much as I can, and will also invite discussion on the limitations and limits of current causal mediation analysis. This is a joint work with Shuxi Zeng at Duke University.
February 23, 2021
Ещё видео!