Auxiliary Circle | Polar equation of auxiliary circle | Polar Coordinate System | @drcolleger
Show that the auxiliary circle of the conic l/r=1-e cosθ is
r^2 (e^2-1)+2ler cosθ+l^2=0
The auxiliary circle of a conic is the locus of the foot of the perpendicular from the focus on any tangent on it.
My another channel for Competitive Mathematics:
[ Ссылка ]
My Some Video Playlist:
Two Dimension Geometry :
[ Ссылка ]
Differential Calculus:
[ Ссылка ]
Set Theory:
[ Ссылка ]
Abstract Algebra
[ Ссылка ]
Linear Algebra:
[ Ссылка ]
Class 11 Math
[ Ссылка ]
Real Analysis
[ Ссылка ]
polar coordinate system by dr colleger,auxiliary circle,auxiliary circle of a conic,polar equation of a auxiliary circle of a conic,math,maths,circle,circles,mathematics,cartesian coordinate system,polar coordinate system,polar coordinates,dr colleger,polar coordinate geometry,polar coordinate system bsc,polar coordinate system engineering mathematics,polar coordinates b.sc 1st year,polar coordinates btech 1st year,polar coordinates and cartesian coordinates
#drcolleger
#auxiliarycircle
#polarcoordinatesystem
#polarcoordinates
#cbcsmath
#bscmathematics
#2dgeometry
Ещё видео!