In this video we verify Stokes' Theorem by computing out both sides for an explicit example of a hemisphere together with a particular vector field. Stokes Theorem was introduced in the previous video in the vector calculus playlist (see below) and equated the line integral giving the circulation around the boundary curve with the surface integral of the proportion of the curl of the vector field in the normal direction. We finish with a really cool trick, where the old surface can be replaced with an entirely new one that is actually easier to computer.
0:00 Recalling Stoke's Theorem
2:40 Computing Circulation
5:02 Computing Surface Integral
10:40 Replacing the old surface with a new one
MY VECTOR CALCULUS PLAYLIST:
►VECTOR CALCULUS (Calc IV) [ Ссылка ]
OTHER COURSE PLAYLISTS:
►DISCRETE MATH: [ Ссылка ]
►LINEAR ALGEBRA: [ Ссылка ]
►CALCULUS I: [ Ссылка ]
► CALCULUS II: [ Ссылка ]
►MULTIVARIABLE CALCULUS (Calc III): [ Ссылка ]
►DIFFERENTIAL EQUATIONS: [ Ссылка ]
OTHER PLAYLISTS:
► Learning Math Series
[ Ссылка ]
►Cool Math Series:
[ Ссылка ]
BECOME A MEMBER:
►Join: [ Ссылка ]
MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: [ Ссылка ]
SOCIALS:
►Twitter (math based): [ Ссылка ]
►Instagram (photography based): [ Ссылка ]
Ещё видео!