This is an audio version of the Wikipedia Article:
[ Ссылка ]
00:01:18 1 History
00:01:35 2 Calculations
00:02:00 2.1 Example: Sun and Moon
00:06:48 2.2 Magnitude addition
00:10:14 2.3 Absolute magnitude
00:12:23 3 Standard reference values
00:15:06 4 Table of notable celestial objects
00:16:28 5 See also
00:20:05 6 References
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
[ Ссылка ]
Other Wikipedia audio articles at:
[ Ссылка ]
Upload your own Wikipedia articles through:
[ Ссылка ]
Speaking Rate: 0.7853098246194354
Voice name: en-GB-Wavenet-A
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
The apparent magnitude (m) of an astronomical object is a number that is a measure of its brightness as seen by an observer on Earth. The magnitude scale is logarithmic. A difference of 1 in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The brighter an object appears, the lower its magnitude value (i.e. inverse relation), with the brightest astronomical objects having negative apparent magnitudes: for example Sirius at −1.46.
The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry. Apparent magnitudes are used to quantify the brightness of sources at ultraviolet, visible, and infrared wavelengths. An apparent magnitude is usually measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V ("visual") filter band would be denoted either as mV or often simply as V, as in "mV = 15" or "V = 15" to describe a 15th-magnitude object.
Ещё видео!