In this video, I will be showing you how to perform principal component analysis (PCA) in Python using the scikit-learn package. PCA represents a powerful learning approach that enables the analysis of high-dimensional data as well as reveal the contribution of descriptors in governing the distribution of data clusters. Particularly, we will be creating PCA scree plot, scores plot and loadings plot.
🌟 Buy me a coffee: [ Ссылка ]
📎CODE: [ Ссылка ]
⭕ Playlist:
Check out our other videos in the following playlists.
✅ Data Science 101: [ Ссылка ]
✅ Data Science YouTuber Podcast: [ Ссылка ]
✅ Data Science Virtual Internship: [ Ссылка ]
✅ Bioinformatics: [ Ссылка ]
✅ Data Science Toolbox: [ Ссылка ]
✅ Streamlit (Web App in Python): [ Ссылка ]
✅ Shiny (Web App in R): [ Ссылка ]
✅ Google Colab Tips and Tricks: [ Ссылка ]
✅ Pandas Tips and Tricks: [ Ссылка ]
✅ Python Data Science Project: [ Ссылка ]
✅ R Data Science Project: [ Ссылка ]
⭕ Subscribe:
If you're new here, it would mean the world to me if you would consider subscribing to this channel.
✅ Subscribe: [ Ссылка ]
⭕ Recommended Tools:
Kite is a FREE AI-powered coding assistant that will help you code faster and smarter. The Kite plugin integrates with all the top editors and IDEs to give you smart completions and documentation while you’re typing. I've been using Kite and I love it!
✅ Check out Kite: [ Ссылка ]
⭕ Recommended Books:
✅ Hands-On Machine Learning with Scikit-Learn : [ Ссылка ]
✅ Data Science from Scratch : [ Ссылка ]
✅ Python Data Science Handbook : [ Ссылка ]
✅ R for Data Science : [ Ссылка ]
✅ Artificial Intelligence: The Insights You Need from Harvard Business Review: [ Ссылка ]
✅ AI Superpowers: China, Silicon Valley, and the New World Order: [ Ссылка ]
⭕ Stock photos, graphics and videos used on this channel:
✅ [ Ссылка ]
⭕ Follow us:
✅ Medium: [ Ссылка ]
✅ FaceBook: [ Ссылка ]
✅ Website: [ Ссылка ] (Under construction)
✅ Twitter: [ Ссылка ]
✅ Instagram: [ Ссылка ]
✅ LinkedIn: [ Ссылка ]
✅ GitHub 1: [ Ссылка ]
✅ GitHub 2: [ Ссылка ]
⭕ Disclaimer:
Recommended books and tools are affiliate links that gives me a portion of sales at no cost to you, which will contribute to the improvement of this channel's contents.
#dataprofessor #PCA #clustering #cluster #principalcomponentanalysis #scikit #scikitlearn #sklearn #prediction #jupyternotebook #jupyter #googlecolab #colaboratory #notebook #machinelearning #datascienceproject #randomforest #decisiontree #svm #neuralnet #neuralnetwork #supportvectormachine #python #learnpython #pythonprogramming #datascience #datamining #bigdata #datascienceworkshop #dataminingworkshop #dataminingtutorial #datasciencetutorial #ai #artificialintelligence #tutorial #dataanalytics #dataanalysis #factor #principalcomponent #principalcomponents #pc #machinelearningmodel
Ещё видео!