Given real numbers a and b, where a is positive, we can always find a natural number m so that n*a is greater than b. In other words, we can add a to itself enough times to get a number greater than b. Equivalently, given any real number x, there exists a natural number greater than x, meaning the natural numbers are unbounded above. This is the Archimedean Principle, and we prove it in today's real analysis lesson. #realanalysis
This is a proof by contradiction, making use of the definition of supremum and the completeness axiom/least upper bound property.
Definition of Supremum and Infimum: [ Ссылка ]
Real Analysis Course: [ Ссылка ]
Real Analysis exercises: [ Ссылка ]
Other similar names for this principle: Archimedean Property, Archimede's Principle, Archimedean Axiom, axiom of Archimedes
◉Textbooks I Like◉
Graph Theory: [ Ссылка ]
Real Analysis: [ Ссылка ]
Abstract Algebra: [ Ссылка ]
Linear Algebra: [ Ссылка ]
Calculus: [ Ссылка ]
Proofs and Set Theory: [ Ссылка ] (available for free online)
Statistics: [ Ссылка ]
Discrete Math: [ Ссылка ]
Number Theory: [ Ссылка ]
★DONATE★
◆ Support Wrath of Math on Patreon for early access to new videos and other exclusive benefits: [ Ссылка ]
◆ Donate on PayPal: [ Ссылка ]
Thanks to Loke Tan, Matt Venia, Micheline, Doug Walker, Odd Hultberg, Marc, Roslyn Goddard, Shlome Ashkenazi, Barbora Sharrock, Mohamad Nossier, Rolf Waefler, Shadow Master, and James Mead for their generous support on Patreon!
Outro music is mine. You cannot find it anywhere, for now.
Follow Wrath of Math on...
● Instagram: [ Ссылка ]
● Facebook: [ Ссылка ]
● Twitter: [ Ссылка ]
My Math Rap channel: [ Ссылка ]
Ещё видео!