Questions about Ensemble Methods frequently appear in data science interviews. In this video, I’ll go over various examples of ensemble learning, the advantages of boosting and bagging, how to explain stacking, and more!
🟢Get all my free data science interview resources
[ Ссылка ]
🟡 Product Case Interview Cheatsheet [ Ссылка ]
🟠 Statistics Interview Cheatsheet [ Ссылка ]
🟣 Behavioral Interview Cheatsheet [ Ссылка ]
🔵 Data Science Resume Checklist [ Ссылка ]
✅ We work with Experienced Data Scientists to help them land their next dream jobs. Apply now: [ Ссылка ]
// Comment
Got any questions? Something to add?
Write a comment below to chat.
// Let's connect on LinkedIn:
[ Ссылка ]
====================
Contents of this video:
====================
00:00 Introduction
00:38 Ensemble Methods
01:40 Bagging (Bootstrap Aggregation)
03:00 Example: Random Forest
03:44 Boosting
05:14 Example: Gradient-Boosted Trees
05:47 Bagging vs. Boosting
06:40 Stacking
07:08 Two-Level Ensemble
07:44 Pros and Cons
Ещё видео!