Keep exploring at ► [ Ссылка ]. Get started for free, and hurry—the first 200 people get 20% off an annual premium subscription.
0:00 Multiplying Matrices the standard way
2:05 The Strassen Method for 2x2 Matrices
3:52 Large matrices via induction
7:25 The history and the future
10:19 brilliant.org/TreforBazett
In this video we explore how to multiply very large matrices as computationally efficiently as possible. Then standard algorithm from linear algebra results in n^3 multiplications to multiply nxn matrices. But can we do better? The Strassen algorithm improved this to about n^2.8, first in the 2x2 case and then we can prove via induction it works in general. This improvement has seen a range of improvements over the last 50 years inching closer - but still far away - to the theoretically limit of n^2.
Further Reading:
Going into the details of the laser method (what happened after the Strassen algorithm I showed): [ Ссылка ]
The AlphaTensor AI paper: [ Ссылка ]
A nice summary from Quanta: [ Ссылка ]
Check out my MATH MERCH line in collaboration with Beautiful Equations
►[ Ссылка ]
COURSE PLAYLISTS:
►DISCRETE MATH: [ Ссылка ]
►LINEAR ALGEBRA: [ Ссылка ]
►CALCULUS I: [ Ссылка ]
► CALCULUS II: [ Ссылка ]
►MULTIVARIABLE CALCULUS (Calc III): [ Ссылка ]
►VECTOR CALCULUS (Calc IV) [ Ссылка ]
►DIFFERENTIAL EQUATIONS: [ Ссылка ]
►LAPLACE TRANSFORM: [ Ссылка ]
►GAME THEORY: [ Ссылка ]
OTHER PLAYLISTS:
► Learning Math Series
[ Ссылка ]
►Cool Math Series:
[ Ссылка ]
BECOME A MEMBER:
►Join: [ Ссылка ]
MATH BOOKS I LOVE (affilliate link):
► [ Ссылка ]
SOCIALS:
►Twitter (math based): [ Ссылка ]
►Instagram (photography based): [ Ссылка ]
Ещё видео!