MIT Introduction to Deep Learning 6.S191: Lecture 6
Deep Learning Limitations and New Frontiers
Lecturer: Ava Soleimany
January 2020
For all lectures, slides, and lab materials: [ Ссылка ]
Lecture Outline
0:00 - Introduction
0:58 - Course logistics
3:59 - Upcoming guest lectures
5:35 - Deep learning and expressivity of NNs
10:02 - Generalization of deep models
14:14 - Adversarial attacks
17:00 - Limitations summary
18:18 - Structure in deep learning
22:53 - Uncertainty & bayesian deep learning
28:09 - Deep evidential regression
33:08 - AutoML
36:43 - Conclusion
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!
MIT 6.S191 (2020): Deep Learning New Frontiers
Теги
deep learningmitartificial intelligenceneural networksmachine learning6s1916.s191mit deep learningava soleimanysoleimanyalexander aminiaminilecture 2tensorflowcomputer visiondeep mindopenaiintroductiondeeplearningaitensorflow tutorialwhat is deep learningdeep learning basicsdeep learning pythonbayesian deep learningevidential deep learningdeep evidential regressionadversarial attacksgraph neural networksautomlgeneralization