Anthropic has launched a new retrieval mechanism called contextual retrieval, which combines chunking strategies with re-ranking to significantly improve performance. In this video, I explain how this technique enhances retrieval accuracy, including practical implementation steps and benchmark results. Learn how to optimize your RAG systems by adding contextual embeddings, keyword-based BM25 indexing, and re-ranking to achieve state-of-the-art results.
LINKS:
[ Ссылка ]
[ Ссылка ]
[ Ссылка ]
[ Ссылка ]
[ Ссылка ]
💻 RAG Beyond Basics Course:
[ Ссылка ]
Let's Connect:
🦾 Discord: [ Ссылка ]
☕ Buy me a Coffee: [ Ссылка ]
|🔴 Patreon: [ Ссылка ]
💼Consulting: [ Ссылка ]
📧 Business Contact: engineerprompt@gmail.com
Become Member: [ Ссылка ]
💻 Pre-configured localGPT VM: [ Ссылка ] (use Code: PromptEngineering for 50% off).
Signup for Newsletter, localgpt:
[ Ссылка ]
00:00 Introduction to Contextual Retrieval
00:20 Understanding RAG Systems
00:55 Combining Semantic and Keyword Search
01:44 Challenges with Standard RAG Systems
02:48 Anthropic's Contextual Retrieval Approach
03:37 Implementing Contextual Retrieval
07:06 Performance Improvements and Benchmarks
09:02 Best Practices for RAG Systems
12:48 Code Example and Practical Implementation
15:21 Conclusion and Final Thoughts
All Interesting Videos:
Everything LangChain: [ Ссылка ]
Everything LLM: [ Ссылка ]
Everything Midjourney: [ Ссылка ]
AI Image Generation: [ Ссылка ]
Ещё видео!