In a uniform magnetic field, magnetic particles become magnetized and assemble into chain-like microstructures due to dipole-dipole interactions. The assembled chains tend to align with the direction of the external field. In this analysis using FLOW-3D, a uniform field is applied upward in the z-direction through a micro-channel that contains an initial random distribution of superparamagnetic beads and an array of spherical (gold colored) magnetic dipole elements embedded in its base. In the presence of an applied field, the beads become magnetized and assemble into discrete chain-like structures. These structures in turn, are attracted to the anchored dipole elements. The analysis shows the self-assembly of particle chains and the subsequent attachment of the chains onto the embedded dipole elements. The computational model takes into account fully-coupled particle fluid interaction where the fluid provides a viscous drag on particle motion and the moving particles, in turn, alter the fluid flow. Modeling results courtesy of the University of Buffalo. Visit [ Ссылка ] for more information about the University of Buffalo's work with FLOW-3D for nanotechnology applications.
For more information about FLOW-3D's modeling capabilities, visit [ Ссылка ]
Ещё видео!