Abstract: Quantum field theory on curved spacetime (QFT-CST) is the framework within which our current theories about quantum effects around black holes are formulated. The results of their study, including most famously the Hawking effect and its infamous spawn the information-loss paradox, have revealed several surprises that threaten to overturn the views of space, time, and matter that general relativity and quantum field theory each on their own suggests. In partiular, they appear to point to a deep and hitherto unsuspected connection among our three most fundamental theories, general relativity, quantum field theory and thermodynamics. As such, work in QFT-CST provides some of the most important, central, and fruitful fields of study in theoretical physics, bringing together workers from a variety of fields such as cosmology, general relativity, quantum field theory, particle physics, fluid dynamics, condensed matter, and quantum gravity, providing bridges that now closely connect disciplines once seen as largely independent. The framework, however, has serious mathematical, physical and conceptual problems. In this talk, I will provide a sketch of the framework and a survey of some of the most important problems it faces.
In terms of technical difficulty, this talk rates 4/5.
Ещё видео!