Electric shock occurs upon contact of a (human) body part with any source of electricity that causes a sufficient current through the skin, muscles, or hair. Typically, the expression is used to describe an injurious exposure to electricity. Very small currents can be imperceptible. Larger current passing through the body may make it impossible for a shock victim to let go of an energized object. Still larger currents can cause fibrillation of the heart and damage to tissues. Death caused by an electric shock is called electrocution.
Wiring or other metalwork which is at a hazardous voltage which can constitute a risk of electric shock is called "live", as in "live wire".
The minimum current a human can feel depends on the current type (AC or DC) and frequency. A person can feel at least 1 mA (rms) of AC at 60 Hz, while at least 5 mA for DC. At around 10 milliamperes, AC current passing through the arm of a 68 kg (150 lb) human can cause powerful muscle contractions; the victim is unable to voluntarily control muscles and cannot release an electrified object. This is known as the "let go threshold" and is a criterion for shock hazard in electrical regulations.
The current may, if it is high enough, cause tissue damage or fibrillation which leads to cardiac arrest; more than 30 mA of AC (rms, 60 Hz) or 300 -- 500 mA of DC can cause fibrillation. A sustained electric shock from AC at 120 V, 60 Hz is an especially dangerous source of ventricular fibrillation because it usually exceeds the let-go threshold, while not delivering enough initial energy to propel the person away from the source. However, the potential seriousness of the shock depends on paths through the body that the currents take. If the voltage is less than 200 V, then the human skin, more precisely the stratum corneum, is the main contributor to the impedance of the body in the case of a macroshock—the passing of current between two contact points on the skin. The characteristics of the skin are non-linear however. If the voltage is above 450--600 V, then dielectric breakdown of the skin occurs.[6] The protection offered by the skin is lowered by perspiration, and this is accelerated if electricity causes muscles to contract above the let-go threshold for a sustained period of time.
If an electrical circuit is established by electrodes introduced in the body, bypassing the skin, then the potential for lethality is much higher if a circuit through the heart is established. This is known as a microshock. Currents of only 10 µA can be sufficient to cause fibrillation in this case.
The voltage necessary for electrocution depends on the current through the body and the "Under dry conditions, the resistance offered by the human body may be as high as 100,000 Ohms. Wet or broken skin may drop the body's resistance to 1,000 Ohms," adding that "high-voltage electrical energy quickly breaks down human skin, reducing the human body's resistance to 500 Ohms.
The International Electrotechnical Commission gives the following values for the total body impedance of a hand to hand circuit for dry skin, large contact areas, 50 Hz AC currents (the columns contain the distribution of the impedance in the population percentile; for example at 100 V 50% of the population had an impedance of 1875Ω or less):
Voltage 5% 50% 95%
25 V 1,750 Ω 3,250 Ω 6,100 Ω
100 V 1,200 Ω 1,875 Ω 3,200 Ω
220 V 1,000 Ω 1,350 Ω 2,125 Ω
1000 V 700 Ω 1,050 Ω 1,500 Ω
---------------------------------------------------------
Background Songs:
▽ Follow NCS
➞ Youtube [ Ссылка ]...
➞ SoundCloud [ Ссылка ]
--------------------------------------------------------------
TISHITU
ISO: 9001-2008
RESEARCH AND CONSULTANCY CELL OF INDUSTRIAL APPLICATION
A Joint Accreditation System of Australia and New Zealand
Copyright © All Rights Reserved www.tishitu.org Reg No.08122629691/SSI
Accreditation No. M3111204IN
-~-~~-~~~-~~-~-
Please watch: "Lifi Communication by Arduino UNO Download Project"
[ Ссылка ]
-~-~~-~~~-~~-~-
Ещё видео!