In this video I prove that the growth rate in a population, assuming it uses the logistic model, is fastest at half the carrying capacity. I prove this using the first derivative test but apply it to the 1st and 2nd derivatives of the population function. In my last video I graphically showed that in fact the population appears to be growing fastest at about the half way mark, but in this video I prove it definitely. This is a very good video to understand how population sizes increase so make sure to watch this video!
Download the notes in my video: [ Ссылка ]
View Video Notes on Steemit: [ Ссылка ]
Related Videos:
Differential Equations: Population Growth: Logistic Equation: Example 1: [ Ссылка ]
Differential Equations: Population Growth: Logistic Equation: [ Ссылка ]
Differential Equations: Population Growth: Proportionality Constant: [ Ссылка ]
Differential Equations: Exponential Growth and Decay: [ Ссылка ]
Differential Equations: Separable Equations: [ Ссылка ]
Differential Equations: Euler's Method: [ Ссылка ]
Differential Equations: Direction Fields: [ Ссылка ]
Differential Equations: Population Growth: [ Ссылка ]
First Derivative Test: [ Ссылка ] .
------------------------------------------------------
Become a MES Super Fan! [ Ссылка ]
DONATE! ʕ •ᴥ•ʔ [ Ссылка ]
SUBSCRIBE via EMAIL: [ Ссылка ]
MES Links: [ Ссылка ]
MES Truth: [ Ссылка ]
Official Website: [ Ссылка ]
Hive: [ Ссылка ]
Email me: contact@mes.fm
Free Calculators: [ Ссылка ]
BMI Calculator: [ Ссылка ]
Grade Calculator: [ Ссылка ]
Mortgage Calculator: [ Ссылка ]
Percentage Calculator: [ Ссылка ]
Free Online Tools: [ Ссылка ]
iPhone and Android Apps: [ Ссылка ]
Ещё видео!