In this video, we'll dive into DDoS attack classification using Python, covering key steps from data preprocessing to model training and evaluation.
Table of Contents:
1 - Importing libraries
2 - Data Pre-processing
3 - Data Exploration
4 - Data Splitting
5 - Model Training (Random Forest, Logistic Regression, Neural Network)
6 - Model Evaluation (Accuracy, F1 Score, Recall, Precision, Confusion Matrix)
7 - Model Comparison: Area under the curve (AUC), ROC Curve graph.
Discover how these machine learning algorithms enhance network security and gain insights into effectively identifying and combating DDoS threats.
Books Suggestions for you 🤩:
Malware Analysis: [ Ссылка ]
Malware Analysis with ML: [ Ссылка ]
Android Malware: [ Ссылка ]
Repo link:
[ Ссылка ]
Want a custom project? then follow the links below.
Fiver: [ Ссылка ]
Upwork: [ Ссылка ]
If you like my work, you can support me by buying me a coffee by clicking the link below! 🤩
[ Ссылка ]
#MachineLearning #CyberSecurity #DataScience #DDoSAttack #InfoSec #AI #Tech #PythonProgramming #NetworkSecurity #DeepLearning #CyberDefense #MLAlgorithms #ArtificialIntelligence #Code #InternetSecurity #Algorithm # #InfoSecurity #CyberThreats #IT #Programming # #NetworkDefense #SecuritySolutions #DataSecurity #dissertationcoach #FinalYearProject #ThesisWriting #GraduationProject #DissertationJourney #ProjectDefense #GraduateResearch
Ещё видео!