This video follows from where we left off in Part 2 in this series on the details of Logistic Regression. Last time we saw how to fit a squiggly line to the data. This time we'll learn how to evaluate if that squiggly line is worth anything. In short, we'll calculate the R-squared value and it's associated p-value.
NOTE: This StatQuest assumes that you are already familiar with Part 1 in this series, Logistic Regression Details Pt1: Coefficients:
[ Ссылка ]
For a complete index of all the StatQuest videos, check out:
[ Ссылка ]
If you'd like to support StatQuest, please consider...
Buying The StatQuest Illustrated Guide to Machine Learning!!!
PDF - [ Ссылка ]
Paperback - [ Ссылка ]
Kindle eBook - [ Ссылка ]
Patreon: [ Ссылка ]
...or...
YouTube Membership: [ Ссылка ]
...a cool StatQuest t-shirt or sweatshirt:
[ Ссылка ]
...buying one or two of my songs (or go large and get a whole album!)
[ Ссылка ]
...or just donating to StatQuest!
[ Ссылка ]
Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter:
[ Ссылка ]
Correction:
13:58 The formula at should be 2[(LL(saturated) - LL(overall)) - (LL(saturated) - LL(fit))]. I got the terms flipped.
#statquest #logistic
Ещё видео!