QSEC’s quantum computing subgroup organizes and hosts a seminar series throughout the upcoming semester. These events are free and open to the public. This seminar on Tuesday September 15 was given by Dr. Andrew Glaudell of GMU Mathematical Sciences Department. For any questions, contact qsec@gmu.edu.
Abstract
We study two-qubit circuits over the Clifford+CS gate set which consists of Clifford gates together with the controlled-phase gate CS=diag(1,1,1,i). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-tolerantly in most error-correcting schemes with magic state distillation. However, since non-Clifford gates are typically more expensive to perform in a fault-tolerant manner, it is desirable to construct circuits that use few CS gates. In the present paper, we introduce an algorithm to construct optimal circuits for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS operator U and efficiently produces a Clifford+CS circuit for U using the least possible number of CS gates. Because our algorithm is deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for the operator. We give a formal description of these normal forms as walks over certain graphs and use this description to derive an asymptotic lower bound of 5log(1/epsilon)+O(1) on the number CS gates required to epsilon-approximate any 4×4 unitary matrix.
Ещё видео!