Presented By:
Daniel Millard, PhD - Manager, Applications Development - Axion BioSystems
Speaker Biography:
Dr. Millard received his PhD in Biomedical Engineering at the Georgia Institute of Technology and specialized in Neural Engineering. At Axion Biosystems, his team identifies, develops, and implements advanced applications for the Maestro Pro and Maestro Edge multiwell microelectrode array platforms. Their goal is to establish and refine electrophysiological assays that are scientifically rigorous, yet also accessible and scale-able. By modeling complex human systems in vitro, such as a seizure- or arrhythmia-in-a-dish, they help content experts answer questions in drug discovery, safety toxicology, genetics, or disease. Dr. Millard also serves a leadership role on the CiPA Myocyte Core Team and is a co-chair of the HESI NeuTox initiative aimed at improving in vitro neural assays for evaluating seizurogenic risk.
Webinar:
Tracking neural network activity in the B-27™ Plus Neuronal Culture System with a Maestro Pro MEA platform
Webinar Abstract:
Neuronal networks play a fundamental role in the brain, with many diseases linked to disruptions in network activity. Cell-based neuronal assays need to recapitulate these critical aspects of biology in vitro to be applicable in drug discovery, disease-in-a-dish modeling, and safety pharmacology and toxicology. Importantly, in vitro neural preparations, such as cultured rodent primary neurons, form synaptic connections that give rise to spontaneous electrophysiological activity and allow functional evaluation of network activity. Using in vitro Maestro MEA technology , scientists can now quickly and easily measure key electrical network behaviors, such as excitability and connectivity, from neurons cultured over electrodes in multiwell MEA plates.
A critical component of any in vitro neural assay is the culture media system, which must support long-term viability and electrophysiological activity to encourage functional synaptic connections and network formation. B-27™ Supplement and Neurobasal™ Medium have been widely used throughout neural assay development in the last 20+ years, but recent approaches to model specific neural phenotypes, such as seizures-in-a-dish, highlights a need for neural media systems to develop robust phenotypes of synchronized network activity.
This webinar will provide an in-depth review of techniques for performing MEA assays to assess neural network electrophysiology. In so doing, we will characterize the neural network maturation produced with the new B-27™ Plus Neuronal Culture System, as compared to other media types. The B-27™ Plus System excelled in three key areas for in vitro neural assays: 1) supported long-term culture with a high degree of electrode coverage, 2) encouraged substantial spontaneous electrophysiological activity, and 3) facilitated network maturation as evidenced by synchronous activity.
Sponsored By:
Thermo Fisher Scientific/Gibco
Earn PACE Credits:
1. Make sure you’re a registered member of LabRoots ([ Ссылка ])
2. Watch the webinar on YouTube or on the LabRoots Website ([ Ссылка ])
3. Click Here to get your PACE credits (Expiration date – November 16, 2019 10:00 AM): [ Ссылка ]
LabRoots on Social:
Facebook: [ Ссылка ]
Twitter: [ Ссылка ]
LinkedIn: [ Ссылка ]
Instagram: [ Ссылка ]
Pinterest: [ Ссылка ]
SnapChat: labroots_inc
Ещё видео!