In this video we take the Laplace Transform of derivatives or integrals. What's amazing is that these result in expressions entirely in terms of the original function. This will be important for us when we take the Laplace Transform of a differential equation because it will convert an ODE with initial conditions into an algebraic equation we can hopefully solve more easily.
Formulas:
1) L{f(t)}=sF(s)-f(0)
2)L{ integral from 0 to t of f(tau)} = F(s)/s
This is part of my series on the Laplace Transforms in my Differential Equations Playlist: [ Ссылка ]
****************************************************
Other Course Playlists:
►CALCULUS I: [ Ссылка ]
► CALCULUS II: [ Ссылка ]
►MULTIVARIABLE CALCULUS III: [ Ссылка ]
►DISCRETE MATH: [ Ссылка ]
►LINEAR ALGEBRA: [ Ссылка ]
***************************************************
► Want to learn math effectively? Check out my "Learning Math" Series:
[ Ссылка ]
►Want some cool math? Check out my "Cool Math" Series:
[ Ссылка ]
****************************************************
►Follow me on Twitter: [ Ссылка ]
*****************************************************
This video was created by Dr. Trefor Bazett. I'm an Assistant Teaching Professor at the University of Victoria.
BECOME A MEMBER:
►Join: [ Ссылка ]
MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: [ Ссылка ]
Ещё видео!